当前位置:灰灰分享 > 慢生活 > 生活中可用数学建模研究的现象有__

生活中可用数学建模研究的现象有__

  • 发布:2024-10-05 07:19:28
  • 38次

众所周知,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。数学建模可以说是用数学方法解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模[1]。人们通过对所要解决的问题建立数学模型,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期天气预报等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。  1 现代医学应用数学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中物质的量与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出生物医学工程学、数量遗传学、药代动力学、计量诊断学、计量治疗学、定量生理学等边缘学科,同时预防医学、基础医学和临床医学等传统学科也都在试图建立数学模式和运用数学理论方法来探索出其数量规律[2]。而这些都要用到数学知识。 ① 数学模型有助生物学家将某些变量隔离出来、预测未来实验的结果,或推论无法测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。 ② 可以利用数学分析实验数据资料。当实验数据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组的发展,产生了前所未有的巨量生物医学数据。为分析利用这些巨量数据而发展起来的生物信息学广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。  2 医学上的一些例子 ① 医学统计学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和数据处理。医学统计学是基于概率论和数理统计的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科[3]。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、流行病学监督,对药品制造、临床化验工作等作质量控制,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以传染病模型为例,了能定量的研究传染病的传播规律,人们建立了各类模型来预测、控制疾病的发生发展。这种模型的建立是在合理设的前提下,选择了一些相关因素(例如自然因素、人为因素)作为参数,并通过它们之间的关系来描述传染病学的现象。通过这些现象,可以反映出传染病的流行过程及一些规律特征。运用这些规律,人们可以估计不同条件下的相关因素参数、预测疾病的发生发展趋势、设计疾病控制方案及检验设病因等。比如,通过预测高峰期的时间及发病人数,可以让人们提前进入预警状态从而增进个人的防御意识及社会的整体防疫力,预算对突发的物资投入以实现对经济的宏观调控和减少浪费,并使突发疫情对人们生产生活所带来的不便最小化。SARS(Severe Acute Respiratory Syndrome,俗称非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件的重要性

生活中可用数学建模研究的现象有__

数学建模的探讨对象是什么

数学建模B题一 洁具流水时间设计

我国是个淡水相当贫乏的国家,人均可利用淡水量不到世界平均数的四分之一。特别是近几年来,由于环境污染导致降水量减少,不少省市出现大面积的干旱。许多城市为了节能,纷纷取提高水价、电价的方式来抑制能源消费。而另一方面,据有关资料报道,我国目前生产的各类洁具消耗的能源(主要是指用水量)比其它发达国家的同类产品要高出60%以上。

某洁具生产厂家打算开发一种男性用的全自动洁具,它的单位时间内流水量为常数v,为达到节能的目的,现有以下两个控制放水时间的设计方案供用。

方案一:使用者开始使用洁具时,受感应洁具以均匀水流开始放水,持续时间为T,然后自动停止放水。若使用时间不超过T-5秒,则只放水一次,否则,为保持清洁,在使用者离开后再放水一次,持续时间为10秒。

方案二:使用者开始使用洁具时,受感应洁具以均匀水流开始放水,持续时间为T,然后自动停止放水。若使用时间不超过T-5秒,则只放水一次,否则,为保持清洁,到2T时刻再开始第二次放水,持续时间也为T。但若使用时间超过2T-5秒,则到4T时刻再开始第三次放水,持续时间也是T……在设计时,为了使洁具的寿命尽可能延长,一般希望对每位使用者放水次数不超过2次。

该厂家随机调查了100人次男性从开始使用到离开洁具为止的时间(单位:秒)见下表:

时间(秒) 12 13 14 15 16 17 18

人次 1 5 12 60 13 6 3

(1)请你根据以上数据,比较这两种设计方案从节约能源的角度来看,哪一种更好?并为该厂家提供设计参数T(秒)的最优值,使这种洁具在相应设计方案下能达到最大限度节约水、电的目的;

(2)从既能保持清洁又能节约能源出发,你是否能提出更好的设计方案,请通过建立数学模型与前面的方案进行比较。

其实,家庭中的其他生活用水一样可以用来冲洗马桶,比方说经过最后一次漂洗,衣服洗干净了,从洗衣机排出的水看上去还比较干净,直接流进下水管还真有点可惜。还有像洗完脸、洗过菜的水,如果能再次利用就好了。业余发明家吴汉平研制了一套生活用水回用装置,获得了国家专利。他将厨房的洗涤槽、卫生间的面盆和坐便器水箱连接到一个储水箱上。洗涤槽、面盆流出来的比较干净的水进入储水箱,供冲厕使用。

现在我来教你省水小秘方1.要用省水形马桶,般审型马桶加装2段式冲水配件。2.水箱底下浮饼拆下 即成无段式控制出水。

3.小便池自动冲水器冲水时间调短。 4.用米水、洗衣水、洗碗水及洗澡水等清水来浇花、洗车,及擦洗地板。5.清理地毯法由湿式或蒸汽式改成乾燥粉沫式。6.将除湿机收集的水,及纯水机、蒸馏水机等净水设备的废水回收再利用。

现在我说完了6项省水秘方,你是否想到比我更好的省水方法呢?你是否在省水呢?我想你应该在省水吧!

长期以来,人们普遍认为水是“取之不尽,用之不竭”的,不知道爱惜,而浪费挥霍。事实上,水日益紧缺,而我市的城市供水工作更是在严重缺水的边缘艰难度日,自来水来之不易。

人不可一日无水,水是生命之源,珍惜水就是珍惜自己的生命!在此,我们介绍一些日常生活中的节水常识:

刷牙

浪费:不间断放水,30秒,用水约6升。

节水:口杯接水,3口杯,用水0.6升。三口之家每日两次,每月可节水486升。

洗衣

浪费:洗衣机不间断地边注水边冲洗、排水的洗衣方式,每次需用水约165升。

节水:洗衣机用洗涤—脱水—注水—脱水—注水—脱水方式洗涤,每次用水110升,每次可节水55升,每月洗4次,可节水220升。

另外,衣物集中洗涤,可减少洗衣次数;小件、少量衣物提倡手洗,可节约大量水;洗涤剂过量投放将浪费大量水。

洗浴

浪费:过长时间不间断放水冲淋,会浪费大量水。

盆浴时放水过多,以至溢出,或盆浴时一边打开水塞,一边注水,浪费将十分惊人。

节水:间断放水淋浴(比如脚踏式、感应式等)。搓洗时应及时关水。避免过长时间冲淋。

盆浴后的水可用于洗衣、洗车、冲洗厕所、拖地等。

炊事

浪费:水龙头大开,长时间冲洗。烧开水时间过长,水蒸汽大量蒸发。用自来水冲淋蔬菜、水果。

节水:炊具食具上的油污,先用纸擦除,再洗涤,可节水。

控制水龙头流量,改不间断冲洗为间断冲洗。

洗车

浪费:用水管冲洗,20分钟,用水约240升。

节水:用水桶盛水洗车,需3桶水,用水约30升。使用洗涤水、洗衣水洗车。使用节水喷雾水枪冲洗。利用机械自动洗车,洗车水处理循环使用。

节水小方法:

节约用水,利在当代,功在千秋,这是经过讨论同学们一起研究出一些生活节水小方法:

一、淘米水洗菜,再用清水清洗,不仅节约了水,还有效地清除了蔬菜上的残存农药;

二、洗衣水洗拖帕、帚地板、再冲厕所。第二道清洗衣物的洗衣水擦门窗及家具、洗鞋袜等;

三、大、小便后冲洗厕所,尽量不开大水管冲洗,而充分利用使用过的“脏水”;

四、夏天给室内外地面洒水降温,尽量不用清水,而用洗衣之后的洗衣水;

五、自行车、家用小轿车清洁时,不用水冲,改用湿布擦,太脏的地方,也宜用洗衣物过后的余水冲洗;

六、冲厕所:如果您使用节水型设备,每次可节水4一5kg;

七、家庭浇花,宜用淘米水、茶水、洗衣水等;

八、家庭洗涤手巾、小对象、瓜果等少量用水。宜用盆子盛水而不宜开水龙头放水冲洗;

九、洗地板:用拖把擦洗,可比用水龙头冲洗每次每户可节水200kg以上;

十、水龙头使用时间长有漏水现象,可用装青霉素的小药瓶的橡胶盖剪一个与原来一样的垫圈放进去,可以保证滴水不漏;

十一、将卫生间里水箱的浮球向下调整2厘米,每次冲洗可节省水近3kg;按家庭每天使用四次算,一年可节药水4380kg。

十二、洗菜:一盆一盆地洗,不要开着水龙头冲,一餐饭可节省50kg;

十三、淋浴:如果您关掉龙头擦香皂,洗一次澡可节水60kg;

十四、手洗衣服:如果用洗衣盆洗、清衣服则每次洗、清衣比开着水龙头节省水200kg;

十五、用洗衣机洗衣服:建议您满桶再洗,若分开两次洗,则多耗水120kg;

十六、洗车:用抹布擦洗比用水龙头冲洗,至少每次可节水400kg;

数学建模算法(21)对策论(上)

数学建模的探讨对象是现实世界的一个特定对象,一个特定目的。

一、数学建模的简介

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究。

了解对象信息、作出简化设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

二、数学建模的数学技术

近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代技术的重要组成部分。

数学建模的思考方法和应用数学模型

1、思考方法

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象。

也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。

2、应用数学模型

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律。

抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。

什么是数学建模思想?数学建模思想在数学中有什么作用?

对策论亦称竞赛论或博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。

在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对抗性质的行为称为 对策行为 。在这类行为中。参加斗争或竞争的各方各自具有不同的目标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。

对策问题的特征是参与者为利益相互冲突的各方,其结局不取决于其中任意一方的努力而是各方所取的策略的综合结果。

先看一个大家都熟悉的例子。

表1 各种情况对应的判刑年数

我们从这个问题中看一看对策问题的基本要素

在一个对策行为(或一局对策)中,有权决定自己行动方案的对策参加者,称为局中人。通常用 表示局中人的集合.如果有 个局中人,则 。一般要求一个对策中至少要有两个局中人。在例 1 中,局中人是 两名疑犯。

一局对策中,可供局中人选择的一个实际可行的完整的行动方案称为一个策略。参加对策的每一局中人 ,都有自己的策略集 。一般,每一局中人的策略集中至少应包括两个策略。

再一局对策中,各局中人所选定的策略形成的策略组称为一个局势,即若 是第 个局中人的一个策略,则 个局中人的策略组

就是一个局势。全体局势的集合 可用各局中人策略集的笛卡尔积表示,即:

当局势出现后,对策的结果也就确定了。也就是说,对任一局势, ,局中人 可以得到一个赢得 。显然, 是局势 的函数,称之为第 个局中人的赢得函数。这样,就得到一个向量赢得函数 。

本节我们只讨论有两名局中人的对策问题,其结果可以推广到一般的对策模型中去。

零和对策是一类特殊的对策问题。在这类对策中,只有两名局中人,每个局中人都只有有限个策略可供选择。在任一纯局势下,两个局中人的赢得之和总是等于零,即双方的利益是激烈对抗的。

设局中人Ⅰ,Ⅱ的策略集分别为:

当局中人Ⅰ选定策略 和局中人Ⅱ选定策略 后,就形成了一个局势 ,可见这样的局势共有 个。对任一局势 ,记局中人Ⅰ的赢得值为 ,并称:

为局中人Ⅰ的赢得矩阵(或为局中人Ⅱ的支付矩阵)。由于定定对策为零和的,故局中人Ⅱ的赢得矩阵就是 ,一个零和对策就给定了,零和对策又可称为矩阵对策并可简记成:

从 中可以看出,若局中人Ⅰ希望获得最大盈利30,需用策略 ,但此时若局中人Ⅱ用策略 ,局中人Ⅰ取策略

时,最坏的赢得结果分别是:

其中最好的可能为 。如果局中人Ⅰ取策略 ,无论局中人Ⅱ取什么策略,局中人Ⅰ的赢得君不悔少于2.

局中人Ⅱ取各方案的最大损失为 , ,和 。当局中人Ⅱ取策略 ,其损失不会超过2。注意到在赢得矩阵矩阵,2即是所在航中的最小元素又是所在列中的最大元素。此时,只要对方不改变策略,任一局中人都不可能通过变换策略来增大赢得或减少损失,成这样的局势为对策的一个 稳定点 稳定解

给定一个对策 ,如何判断它是否有鞍点呢?为了回答这一问题,先引入下面的极大极小原理。

具有稳定解的零和问题是一类特别简单的对策问题,它所对应的赢得矩阵存在鞍点,任一局中人都不可能通过自己单方面的努力来改进结果。然而,在实际遇到的零和对策中更典型的是

的情况。由于矩阵中不存在鞍点,此时在只使用纯策略的范围内,对策问题无解,下面我们引进零和对策的混合策略。

设局中人Ⅰ用概率 选用策略 ,局中人Ⅱ用概率 选用策略 , ,记 ,则局中人Ⅰ的期望赢得为 ,简单记:

使用纯策略的对策问题(具有稳定解的对策问题)可以看成使用混合策略的对策问题的特殊情况,相当于以概率 1 选取其中某一策略,以概率 0 选取其余策略。

解:双方可选择的策略集分别是:

轰炸机Ⅰ装,Ⅱ护航。

轰炸机Ⅱ装,Ⅰ护航。

赢得矩阵 , 为 方取策略 而 方取策略 时,轰炸机轰炸 方指挥部的概率,由题意可计算出:

即赢得矩阵:

易求得 。由于 ,矩阵 不存在鞍点,应当求最佳混合策略。

现设 以概率 取策略 ,以概率 取策略 ; 以概率 取策略 ,以概率 取策略 。

记零和对策 的解集为 ,下面三个定理是关于对策解集性质的主要结果:

上一节课,我们讲了“关系是数学思想的基础,也是数学思想的核心!”可以说,数学是一门关系学。不论是什么样的数学题,其实都是在围绕着“关系”来论证的。解题的过程,其实就是“找关系,理顺关系”的过程。那么,我们今天讲一下数学思想中的“建模思想”:

一道数学题摆在你的面前,如果单纯地把它只是当成个题来看,如果单纯地把它当成一个白纸黑字来看,那么就显得很抽象,理解起来有点儿难,做起来就更难。但是,如果你把它跟生活联系在一起,你把它跟生活中的事物联系在一起,那么再难的数学题也就变得简单了许多。

很显然,只是用数学语言来描述的数学是很抽象的,只是用数学语言来描述的数学题也是很抽象的。那么,什么是数学语言呢,那就是跟数学相关的一切语言,说白了,那就是数学书里的一切语言,数学资料里的一切语言,数学题中的一切语言,包括数字、文字、字母及符号等等。也就是为数学服务的一切语言。比如一道数学题,这道数学题里面的一切语言,哪怕是一个字符都是数学语言,这样明白了吧!

而现实生活中的东西就变得很直观了,让人看得是一清二楚,思路自然也就明明白白了。单纯地看数学题很抽象,而现实中的东西却很直观,那么一个是抽象的题,一个是直观的东西,二者有什么联系呢?

这就是今天讲的数学谋略之“建模思想”。

建模思想,其实就是,数学与现实的关系。数学是为生活服务的,数学是为了解决现实生活中的东西所存在的问题。数学来源于生活,反映的是现实生活中的问题。也就是说,你看到的每一道数学题,其实就是一个现实生活中的问题,你看到的每一道数学题,其实就是现实生活中的一个东西,只是这个东西被数学语言描述成了一个数学问题,仅此而已

有些同学,为什么觉得数学很难?为什么觉得数学很抽象?为什么觉得总是学不好数学?其根本原因就是,这些同学把数学和生活分开了,只是把数学看成了数学,只是把数学题看成了白纸黑字写的数学题。

数学和生活是一个整体,谁也离不开谁,数学就是生活,生活就是数学。数学是思想,生活是肉体,没有肉体的思想是没有意义的。这就是数学的本质。建模思想恰恰揭露了数学的本质!

同样的学校,同样的数学课本,同样老师讲的课,同样的数学题,有的学生成绩好,有的学生成绩差,为什么呢?

数学好的同学与数学差的同学,他们的差别其实就在于,好同学把数学看成了生活,把数学问题看成了生活中的问题,把数学题看成了生活中的东西,他们把数学和生活联系在了一起,而学习差的同学眼睛里只有数学题,而没有生活,他们不懂得数学的本质,他们只是把数学孤零零地看成了白纸黑字的数学,而丢掉了数学反映生活的本质!

讲了这么多,其实就是为了让大家能够更好地明白“到底什么是数学中的建模思想”。相信大家看到这里,已经从模糊中走了出来,已经由模糊变得清晰了!但是,还没有完,不讲得让大家都彻底地明白我绝不罢休,这就是我讲课的风格,我会用最亲民的语言、最简单的语言、最好懂的语言来为大家把“数学建模思想”讲透,让你们看得清清楚楚!

模型大家都见过吧,各种各样的模型,比正方体、球体、锥体、圆柱体、飞机模型、轮船模型、坦克模型、汽车模型……只要是生活中存在的东西,都可以做成模型。所谓的模型,其实就是利用一定的比例把现实东西的样子缩小了,其实模型就是现实东西的缩影!

数学,其实就是现实生活中东西的模型,每一道数学题,其实就是一个来源于生活的模型,它是现实中东西的缩影!它只是通过数学语言,把现实生活中实实在在的东西描述了出来,变成了一个数学题,又叫做“数学模型”。“数学模型”实质上就是现实生活中东西的缩影!

也就是说,“数学建模思想”其实就是用数学语言把现实生活中的东西存在的问题转化成了一个数学问题,然后再用数学知识点去解决这个现实生活中的东西存在的问题!

同学们经常做数学题,应该不难发现这么一个现象,不论什么样的应用题,里面的数据其实反应的就是现实。你肯定没有见过“学校的操场长几毫米”的说法吧。

再举一个例子,我们知道测量长度有各种各样的尺子,比如测量一个学校操场的周长,如果不用计算,我们也能做到,用尺子测量就行了,那么要场的占地面积呢,听说过有测量面积的工具吗?是不是需要计算呀,如果需要计算,那就必须把这个现实存在的操场面积问题,用数学语言转化成数学问题,然后用数学面积公式去计算。

有的同学喜欢抬杠,也就是传说中的“杠精”,说面积可以到生活中测量。好吧,就算你说的是真的,那么,请问一个城市的占地面积怎么测量,地球的表面积怎么测量?如果你还说可以的话,那么,请问火星的表面积怎么测量?难道你要飞到火星上去测量吗?显然是不科学的。这不是为了抬杠,这只是想让大家明白一个道理,那就是生活中的许多问题都是靠数学解决的,都是把现实生活中存在的问题转化成数学问题去解决的。

“数学建模思想”分两部分,一部分是“构建数学模型”,就是把生活中的东西存在的问题用数学语言描述成躺在纸上的一道数学题;另一部分是“解决问题”,也就是用数学知识去解决现实生活中存在的问题!

对于学生来说,我们不关心“构建模型”,“构建模型”那是出题人的事情,我们只关心“解决问题”,解题是学生们应该做的事情!

讲到这里,相信大家已经明白了什么是“数学建模思想”了,我再给大家总结一下:

“数学建模思想”的核心,就是数学和生活密不可分,数学是生活的缩影。所有的数学题都能在生活中找到它的原形,每一道数学题其实就是生活中存在的一个东西。把数学题当成生活中的东西看,一个抽象,一个直观,把抽象和直观联系起来,数学题也就由难变得简单了!

好了,同学们,讲到这里,你们还会把数学题当成一个干巴巴的白纸黑字吗?数学建模思想吃透了,学起数学来就事半功倍了!

今天就讲到这里,我们下一节课讲“学习最有效的方法”!谢谢大家!

阅读全文阅读全文

猜你喜欢

随便看看