导数在实际问题中有很多应用场景。以下是一些例子:
1.物理学中的质点运动的速度和加速度。
2.在已知给定的函数,在其定义域内,该函数是连续的,那么,就可以通过对该函数求一次导数,并令其等于零,可以接触该函数在其定义域内的极值点。
3.利用导数求最值的方法,可以求出实际生活中的某些最值问题。例如,几何方面的应用(面积和体积等的最值),物理方面的应用(功和功率等最值),经济学方面的应用(利润方面最值)。
答:这些方面仁者见仁,智者见智。会有各种各样的理解和回答,我的体会是:
1、最简单的应用是在出行选用交通工具方面,比如:为什么选用飞机,轮船、火车、汽车,除了经济方面的原因之外,就是速度,也就是对时间的要求,根据路程的长短选用交通工具。主要依据就是dS/dt=速度。
在速度方面的运用马拉松比赛是最明显的,比赛开始,运动员抢跑运用d^2S/dt^2获得最大的加速度,抢到最佳位置,然后运用dS/dt=恒定数,使跑步最省力的方法,一直保持匀速运动,到最后,加速度冲刺,最大地发挥体能效用。短跑是发挥dS/dt和d^2S/dt^2的最大效用。
2、在电力学方面:电流强度I=dq/dt,再配用电线方面根据家电的功率大小,选用不同粗细的电线;根据电器的功率大小选用不同的空气开关和断路器。
3、在最大值和最小值方面的应用:比如周长一定的情况下,面积最大的圆形,矩形里,面积最大是正方形;这些都在日常生活中得到应用。我们用的上下水管都是用圆形的,而不用方形的,就是最大限度地节省材料。粮囤和储油罐,都是做成圆形的,也是为了节省材料。建房都是尽可能接近正方形,使建房用料最节省。
尤其是在生产过程中,应用导数的事例就更多了。因此,导数在生活中经常用到,甚至是不自觉地应用。