1、CD格式:正统血脉
在大多数播放软件的“打开文件类型”中,都可以看到*.cda格式,这就是CD音轨了。标准CD格式也就是44.1K的样频率,速率88K/秒,16位量化位数,因为CD音轨可以说是近似无损的,因此它的声音基本上是忠于原声的,因此如果你是一个音响发烧友的话,CD是你的首选。
它会让你感受到天籁之音。CD光盘可以在CD唱机中播放,也能用电脑里的各种播放软件来重放。一个CD音频文件是一个*.cda文件,这只是一个索引信息,并不是真正的包含声音信息,所以不论CD音乐的长短,在电脑上看到的“*.cda文件”都是44字节长。
2、WAV:无损
是微软公司开发的一种声音文件格式,它符合 PIFFResource Interchange File Format 文件规范,用于保存WINDOWS平台的音频信息,被WINDOWS平台及其应用程序所支持。
“*.WAV”格式支持MSADPCM、CCITTA LAW等多种压缩算法,支持多种音频位数、样频率和声道,标准格式的WAV文件和CD格式一样,也是44.1K的样频率,速率88K/秒,16位量化数。?
3、AIFF与AU
这里顺便提一下由苹果公司开发的AIFF格式和为UNIX系统开发的AU格式,它们都和WAV非常相像,在大多数的音频编辑软件中也都支持它们这几种常见的音乐格式。
4、MP3:流行
MP3格式诞生于八十年代的德国,所谓的MP3也就是指的是MPEG标准中的音频部分,也就是MPEG音频层。根据压缩质量和编码处理的不同分为3层,对应“*.mp1"/“*.mp2”/“*.mp3”这3种声音文件。
MP3格式压缩音乐的样频率有很多种,可以用64Kbps或更低的样频率节省空间,也可以用320Kbps的标准达到极高的音质。
5、MIDI:作曲家最爱
经常玩音乐的人应该常听到MIDI这个词,MIDI允许数字合成器和其他设备交换数据。MID文件格式由MIDI继承而来。MID文件并不是一段录制好的声音,而是记录声音的信息,然后在告诉声卡如何再现音乐的一组指令。这样一个MIDI文件每存1分钟的音乐只用大约5~10KB。
MID文件主要用于原始乐器作品,流行歌曲的业余表演,游戏音轨以及电子贺卡等。*.mid文件重放的效果完全依赖声卡的档次。*.mid格式的最大用处是在电脑作曲领域。
6、WMA:最具实力
时下的MP3支持格式最常见的是MP3和WMA。MP3由于是有损压缩,因此讲求样率,一般是44.1KHZ。另外,还有比特率,即数据流,一般为8---320KBPS。
在MP3编码时,还看看它是否支持可变比特率(VBR),现在出的MP3机大部分都支持,这样可以减小有效文件的体积。WMA则是微软力推的一种音频格式,相对来说要比MP3体积更小。
7、RealAudio:流动旋律
RealAudio主要适用于在网络上的在线音乐欣赏,现在大多数的用户仍然在使用56Kbps或更低速率的Modem,所以典型的回放并非最好的音质。有的下载站点会提示你根据你的Modem速率选择最佳的Real文件。
现在real的的文件格式主要有这么几种:有RA(RealAudio)、RM(RealMedia,RealAudioG2)、RMX(RealAudio Secured),还有更多。
这些格式的特点是可以随网络带宽的不同而改变声音的质量,在保证大多数人听到流畅声音的前提下,令带宽较富裕的听众获得较好的音质。 近来随着网络带宽的普遍改善,Real公司正推出用于网络广播的、达到CD音质的格式。
8、OGG:新生代音频格式
Ogg是一种新的音频压缩格式,类似于MP3等现有的音乐格式。但有一点不同的是,它是完全免费、开放和没有专利限制的。
OGG Vobis有一个很出众的特点,就是支持多声道,随着它的流行,以后用随身听来听DTS编码的多声道作品将不会是梦想。因此,这种文件格式可以不断地进行大小和音质的改良,而不影响旧有的编码器或播放器。ogg格式完全开源,完全免费,和mp3不相上下的新格式。
百度百科-音乐格式
摇床和喘气声音音频不一样。
摇床声音通常是指一个人在床上蠕动、晃动或轻微抖动时发出的声音。这种声音可能由于摇动床架或床垫而产生,也可能是因为身体部位与床垫之间的摩擦或别的原因引起。摇床声音有时可能会被认为是一种轻柔、舒适的声音,能够帮助人们放松、入睡。但在一些情况下,摇床声音也可能会打扰别人的睡眠或造成噪音干扰。
喘气声音是指一个人在呼吸时产生的带有响声或不正常音响的声音。这种声音通常是由于呼吸道受到阻塞、狭窄、感染或另外问题引起的。喘气声音可能表现为呼吸急促、呼吸困难或呼吸不畅的症状,并伴随着哮鸣、呼哧、呼噜等声音。喘气声音可能是呼吸系统疾病(如哮喘、慢性阻塞性肺疾病)、过敏反应、感染或潜在健康问题的表现。
这两种声音的相似性可能是因为两者都包含了一些共同的声音特征,比如白噪声成分。声音是一个复杂的领域,充满了令人惊奇的相似性和差异。科学家也一直在研究声音的特性,方便更好地理解声音在生活中的作用和意义。
声音音频的意思
声音音频指的是以声波形式记录和储存的声音数据。是通过音频设备(如麦克风或录音设备)捕捉到的声音信号经过模拟-数字转换处理后得到的数字化音频文件。这些文件可以是各种格式,如MP3、WAV、AAC等。声音音频可以被用于播放、传输、存储和编辑,使人们能够听到和感受到原始声音。
通过声音音频,大家能够享受音乐、收听广播节目、观看**、进行语音通话等。声音音频也被广泛应用于语音识别、语音合成、语音指令等领域。通过音频技术,人们可以有效地处理、传输和分享声音信息,为大家的生活和工作提供了很多便利和。
一般人说话(不唱歌)基频最大可能范围50-500,一般男声平均150-160,我(男生)平时说话略小于200,唱歌(不搞声的话)最大范围130-700,语音处理课作业测的。。
谐波,会更高,4K肯定不止,8K可能不到。
要不然,共振峰哪里来的?元音就是共振峰,一般第一共振峰250-900,第二共振峰600-2.5K(摘自维基),后面的共振峰还更高。
辅音比元音还要高呢,那些擦音,频率直接就上去了。
音色是由于发声物体的质地(如:金属,塑料等)决定的.
所以不同的物体在我们听来就会有不同的声音.
每个人的声音为什么不一样呢?
那是因为每个人的DNA不一样.
不同的DNA会造就不同的发生器官(如:舌,喉,肺,等等)
不管是任何人都有细微和明显的差异.
就算我们听起有的两个人的声音很象,但在精密仪器下,他们的声音也是有差距的.
声音就是震动在空气或其他介质中传播到我们耳膜,让它震动产生的.响度
响度,又称声强或音量,它表示的是声音能量的强弱程度,主要取决于声波振幅的大小。声音的响度一般用声压(达因/平方厘米)或声强(瓦特/平方厘米)来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)。对于响度的心理感受,一般用单位宋(Sone)来度量,并定义 lkHz、40dB的纯音的响度为1宋。响度的相对量称为响度级,它表示的是某响度与基准响度比值的对数值,单位为口方(phon),即当人耳感到某声音与1kHz单一频率的纯音同样响时,该声音声压级的分贝数即为其响度级。可见,无论在客观和主观上,这 两个单位的概念是完全不同的,除1kHz纯音外,声压级的值一般不等于响度级的值,使用中要注意。
响度是听觉的基础。正常人听觉的强度范围为0dB—140dB(也有人认为是-5dB— 130dB)。固然,超出人耳的可听频率范围(即频域)的声音,即使响度再大,人耳也听不出来(即响度为零)。但在人耳的可听频域内,若声音弱到或强到一定程度,人耳同样是听不到的。当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”。一般以1kHz纯音为准进行测量,人耳刚能听到的声压为 0dB(通常大于0.3dB即有感受)、声强为10-16W/cm2 时的响度级定为0口方。而当声音增强到使人耳感到疼痛时,这个阈值称为“痛阈”。仍以1kHz纯音为准来进行测量,使 人耳感到疼痛时的声压级约达到 140dB左右。
实验表明,闻阈和痛阈是随声压、频率变化的。闻阈和痛阈随频率变化的等响度曲线(弗莱彻—芒森曲线)之间的区域就是人耳的听觉范围。通常认为,对于 1kHz纯音,0dB—20dB为宁静声,30dB--40dB为微弱声,50dB—70dB为正常声,80dB—100dB为响音声,110dB— 130dB为极响声。而对于1kHz以外的可听声,在同一级等响度曲线上有无数个等效的声压—频率值,例如,200Hz的30dB的声音和1kHz的 10dB的声音在人耳听起来具有相同的响度,这就是所谓的“等响”。小于0dB闻阈和大于140dB痛阈时为不可听声,即使是人耳最敏感频率范围的声音,人耳也觉察不到。人耳对不同频率的声音闻阈和痛阈不一样,灵敏度也不一样。人耳的痛阈受频率的影响不大,而闻阈随频率变化相当剧烈。人耳对3kHz— 5kHz声音最敏感,幅度很小的声音信号都能被人耳听到,而在低频区(如小于800Hz)和高频区(如大于5kHz)人耳对声音的灵敏度要低得多。响度级较小时,高、低频声音灵敏度降低较明显,而低频段比高频段灵敏度降低更加剧烈,一般应特别重视加强低频音量。通常200Hz--3kHz语音声压级以 60dB—70dB为宜,频率范围较宽的音乐声压以80dB—90dB最佳。
2.音高
音高也称音调,表示人耳对声音调子高低的主观感受。客观上音高大小主要取决于声波基频的高低,频率高则音调高,反之则低,单位用赫兹(Hz)表示。主观感觉的音高单位是“美”,通常定义响度为40方的 1kHz纯音的音高为1000美。赫兹与“美”同样是表示音高的两个不同概念而又有联系的单位。
人耳对响度的感觉有一个从闻阈到痛阈的范围。人耳对频率的感觉同样有一个从最低可听频率20Hz到最高可听频率别20kHz的范围。响度的测量是以 1kHz纯音为基准,同样,音高的测量是以40dB声强的纯音为基准。实验证明,音高与频率之间的变化并非线性关系,除了频率之外,音高还与声音的响度及波形有关。音高的变化与两个频率相对变化的对数成正比。不管原来频率多少,只要两个40dB的纯音频率都增加1个倍频程(即1倍),人耳感受到的音高变化则相同。在音乐声学中,音高的连续变化称为滑音,1个倍频程相当于乐音提高了一个八度音阶。根据人耳对音高的实际感受,人的语音频率范围可放宽到80Hz --12kHz,乐音较宽,效果音则更宽。
3.音色
音色又称音品,由声音波形的谐波频谱和包络决定。声音波形的基频所产生的听得最清楚的音称为基音,各次谐波的微小振动所产生的声音称泛音。单一频率的音称为纯音,具有谐波的音称为复音。每个基音都有固有的频率和不同响度的泛音,借此可以区别其它具有相同响度和音调的声音。声音波形各次谐波的比例和随时间的衰减大小决定了各种声源的音色特征,其包络是每个周期波峰间的连线,包络的陡缓影响声音强度的瞬态特性。声音的音彩纷呈,变化万千,高保真(Hi— Fi)音响的目标就是要尽可能准确地传输、还原重建原始声场的一切特征,使人们其实地感受到诸如声源定位感、空间包围感、层次厚度感等各种临场听感的立体环绕声效果。
另外,表征声音的其它物理特性还有:音值,又称音长,是由振动持续时间的长短决定的。持续的时间长,音则长;反之则短。从以上主观描述声音的三个主要特征看,人耳的听觉特性并非完全线性。声音传到人的耳内经处理后,除了基音外,还会产生各种谐音及它们的和音和差音,并不是所有这些成分都能被感觉。人耳对声音具有接收、选择、分析、判断响度、音高和音品的功能,例如,人耳对高频声音信号只能感受到对声音定位有决定性影响的时域波形的包络(特别是变化快的包络在内耳的延时),而感觉不出单个周期的波形和判断不出频率非常接近的高频信号的方向;以及对声音幅度分辨率低,对相位失真不敏感等。这些涉及心理声学和生理声学方面的复杂问题。
二、人耳的掩蔽效应
一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象称为人耳的“掩蔽效应”。被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯音的最小值称为绝对闻阈。实验表明,3kHz—5kHz绝对闻阈值最小,即人耳对它的微弱声音最敏感;而在低频和高频区绝对闻阈值要大得多。在 800Hz--1500Hz范围内闻阈随频率变化最不显著,即在这个范围内语言可储度最高。在掩蔽情况下,提高被掩蔽弱音的强度,使人耳能够听见时的闻阈称为掩蔽闻阈(或称掩蔽门限),被掩蔽弱音必须提高的分贝值称为掩蔽量(或称阈移)。
1.掩蔽效应
已有实验表明,纯音对纯音、噪音对纯音的掩蔽效应结论如下:
A.纯音间的掩蔽
①对处于中等强度时的纯音最有效的掩蔽是出现在它的频率附近。
②低频的纯音可以有效地掩蔽高频的纯音,而反过来则作用很小。
B.噪音对纯音的掩蔽噪音是由多种纯音组成,具有无限宽的频谱
若掩蔽声为宽带噪声,被掩蔽声为纯音,则它产生的掩蔽门限在低频段一般高于噪声功率谱密度17dB,且较平坦;超过500Hz时大约每十倍频程增大 10dB。若掩蔽声为窄带噪声,被掩蔽声为纯音,则情况较复杂。其中位于被掩蔽音附近的由纯音分量组成的窄带噪声即临界频带的掩蔽作用最明显。所谓临界频带是指当某个纯音被以它为中心频率,且具有一定带宽的连续噪声所掩蔽时,如果该纯音刚好能被听到时的功率等于这一频带内噪声的功率,那么这一带宽称为临界频带宽度。临界频带的单位叫巴克(Bark),1Bark=一个临界频带宽度。频率小于500Hz时,1Bark约等于freq/100;频率大于 500Hz时,1Bark约等于9+41og(freq/1000),即约为某个纯音中心频率的20%。通常认为,20Hz--16kHz范围内有24个子临界频带。而当某个纯音位于掩蔽声的临界频带之外时,掩蔽效应仍然存在。
2.掩蔽类型
(1)频域掩蔽
所谓频域掩蔽是指掩蔽声与被掩蔽声同时作用时发生掩蔽效应,又称同时掩蔽。这时,掩蔽声在掩蔽效应发生期间一直起作用,是一种较强的掩蔽效应。通常,频域中的一个强音会掩蔽与之同时发声的附近的弱音,弱音离强音越近,一般越容易被掩蔽;反之,离强音较远的弱音不容易被掩蔽。例如,—个1000Hz的音比另一个900Hz的音高 18dB,则900Hz的音将被1000Hz的音掩蔽。而若1000Hz的音比离它较远的另一个1800Hz的音高18dB,则这两个音将同时被人耳听到。若要让1800Hz的音听不到,则1000Hz的音要比1800Hz的音高45dB。一般来说,低频的音容易掩蔽高频的音;在距离强音较远处,绝对闻阈比该强音所引起的掩蔽阈值高,这时,噪声的掩蔽阈值应取绝对闻阈。
(2)时域掩蔽
所谓时域掩蔽是指掩蔽效应发生在掩蔽声与被掩蔽声不同时出现时,又称异时掩蔽。异时掩蔽又分为导前掩蔽和滞后掩蔽。若掩蔽声音出现之前的一段时间内发生掩蔽效应,则称为导前掩蔽;否则称为滞后掩蔽。产生时域掩蔽的主要原因是人的大脑处理信息需要花费一定的时间,异时掩蔽也随着时间的推移很快会衰减,是一种弱掩蔽效应。一般情况下,导前掩蔽只有3ms— 20ms,而滞后掩蔽却可以持续50ms—100ms。
设一个这样的情况:当聆听者在两个相同的音箱系统前,位於一 个不受干扰的无限空间 (请参考图1),如果只有一个音箱在播放声音,那麼音波到达听众的一只耳朵会比另一只耳朵有更远的距离。由於高频的音波长小於我们的头部,因此当高频音波在我们的头部的左右耳朵绕射时产生不同的接收讯号。当音源发射讯号到我们的耳朵时,大脑可以感应出讯号音源的音压和时间差异,并分辨出讯号的位置。左声道和右声道的时间差是相当重要的,特别是在低频段,因为人对低频的辨别能力是比较不敏感的。
(图一)
当两个音箱系统同时发出声音时,耳朵分别收到两个不同音箱的音波讯号,左耳朵除了听到左音箱的直接音,还有右音箱时间稍迟的讯号,右耳朵也是一样,所以总共能分辨出4个音源点。因此只要有两个音箱同时播放声音,大脑就能感应到不同的方向,分辨出音乐中乐器的位置。但如果有2对相同音箱在同一个室内的水平位置上,只让其中一对音箱播放声音,大脑有时分辨不出是哪一对音箱在发声。原因是音波发出后经过墙面反射,会和直接音波会合,大脑感觉到的是混合、方向不明确的效果。同样的道理,音源的相位和反射相位形成一个有效的音场移动,左右音箱在连续 不断地发出音波,便会造成有宽度和深度的音场,也就是我们所说的形成一个身历声音效。
一对音箱被用来重播身历声录音时,我们必须要考虑到聆听空间、聆听位置以及音箱摆位元的交互关系。为什麼二个喇叭中间没有东西,但耳朵却能分辨出歌唱者站在中间?简单地说就是声音在空间中直射与反射的混合,到达聆听位置时经过大脑的计算,就产生了立体的声像。
理想的听音空间尺寸
在专业上,鉴听与制作测试用途所需的空间,例如大部分的录音控制室等,都得经过特殊的设计,连尺寸大小也要计算过。一般发烧友当然不容易量身打造像录音室一样的空间,不过我们还是提供一些理想听音环境的尺寸比例和空间因素给读者作为参考。
理论上,室内听音环境的容量在50至110立方米之间为佳,80立方米是很不错的标准。地板到天花板的高度最好是在2.5-3米之间,我们以2.8米的高度为计算基础,建议的空间比例是2.8: 4.2: 6.7 。这样的空间尺寸会提供一个回音与低频反射比较均匀,并且减低音色渲染的音响效果。上次我们已经谈过RT60的概念,简单的说也就是空间中残响的时间,残响时间的长短会影响声音的清晰度与丰润感。一个理想的听音空间,250 Hz至4000 Hz的广大频响范围内,建议平均RT60是0.5秒(偏差不能超过+/-25%),250 Hz 的RT60则应保持0.85秒 (m/s) 。
如果是在一般的居家空间中呢?我们举个例来说明。在音箱摆设的后墙和聆听者后面的墙都作了吸音处理,天花板没有经过任何处理,地板接近音箱的地方不放地毯。由於一般读者家中都没有测试仪器,所以我乾脆替大家计算从125Hz-4kHz的RT60残响时间(请参考表一),我们可以看到空间越大,残响时间就越长。
(表一)
根据这个IEC所提供的音响环境标准,听音时理想温度应保持在20摄氏度(+/-2摄氏度),湿度为65%(+/-5%),气压为800~1000毫巴(Mill bars)之间。在这样的条件下,可以使音响设备的能量输出发挥到最大,并促进改善墙面的理想反射。一般发烧友恐怕很难达到这个标准,但它至少为我们提供一个参考,在天气太热、太冷,或者湿度过高的情况下,声音会打折扣的,而这并不全是器材的关系。
RT60残响时间
从表1看到不同尺寸大小的空间,会产生不一样声压与RT60变化。当身历声的音波讯号产生反射幅度变化太强或过於混乱时,会使音质产生劣化,必须要做一个合理的控制,否则会使音波相位影响到交叉点和混合点产生不均匀的驻波。尤其是低频段的驻波如果没有适当控制,会产生臃肿或模糊的现象,这时就要尽量减低音波的反射幅度。
认识了RT60的意义,进而对残响时间进行控制,可以帮助音响系统发出清晰的音场与明确的定位效果,并使频率回应更加稳定,还原高传真的录音效果才成为可能。
在欧洲一般家庭的音响室,天花板和四面墙的材料通常是一样的,灰泥墙上涂漆或贴墙纸,地板则放上地毯。这种典型的装修是家庭音响空间所建议的标准之一,另外,一些重的悬挂物(如窗帘)被安装在聆听者后面的墙,可以用来防止中、高频的强烈反射。至於两边的墙,可以多放点家俱或悬挂一些厚重相框装饰的画,用来减低反射或增加扩散,吸音与扩散用的摆饰可以做得很漂亮很有品味,都能帮助立体音像的建立。
通常音箱系统是摆在室内两边的角落,而听众座位在音箱的对面,所以喇叭摆位以及二边墙面的处理必须要对称,让直立波中的交叉点与混合点均匀的融合,这对身历声像产生平衡点是很重要的。
吸音的处理 (Sound Absorption)
我们知道视听室是以播放音响为目的,要得到理想的残响特性和时间控制,有时必须在室内空间作一些吸音处理,吸音材料可以被放置在边界线墙上或地板上。这些吸音材料有很多种形式,有兴趣的读者可以参考专业吸音材料生产商的详细资料。在这裏介绍最简单的吸音材料方法,我们简称为吸音板。这个吸音板其实也是市售其他吸音材料的缩影,其基本的构造如图二。可灵活调整的吸音板,其质量M=Kg/m可以装置在墙壁的表面,其板条空隙的密封深度为D在板后。利用板的质量和坚硬密封空间的容量形成一个吸音回响系统,其可吸收的频率,用基本算式算出:
Fo = (C/2 x 3.14)(P/MD) x 10000
C是空气中声音的速度343.3m/s,P是空间的密度 (1.187Kg/m3),M是材料的重量,D是吸音板的深度尺寸。 当声音以这个频率在室内播放时,吸音板会接收到回响反应,一部分声音的能量进入密封的吸音板,与吸音材料互相作用转换为其他能量而消失。吸音板内的吸音材料通常使用玻璃纤维(如图2),但要用多少玻璃纤维呢?如果玻璃纤维放得太少,音波在吸音板内无法全部被吸收会产生杂音;用得太多丝毫没有空隙让音波活动又会降低吸音效果。我们设计的吸音板对低频的吸音系数是0.5,主要吸收频率在50Hz-350Hz之间。一个6mm厚的夹板与适量玻璃纤维(M:3Kg/m2),做成50mm深度的框架,可以吸音160 Hz?主的频率。当然吸音板也可以吸收50Hz以下的低频,但需要更重更大的吸音板,板内空间的深度也需要加大。
(图二)
另一个方法是仿效专业录音室的做法,在原有的房间之内再建造第二个房间,使用木材作为材料。这个结构的低频截止点是20Hz左右,由於木材的特性,低频能有效的穿透过内壳,然向坚硬的外壳反射出去,这也能达到吸音的效果。
图三是三个不同的回响反应,直立波经过不同程度的吸音处理后表现出来的反射幅度、距离都不同。最上面一个图是吸音率30%的结果, 中图是吸音率50%的结果,下图是吸音率70%的结果。当边界线(墙面)作更大程度的吸音处理时,也就是对直立音波的交叉点和混合点作更大程度的处理时,交叉点和混合点就会在听觉上有比较不明显的音波曲线幅度。通常利用测试仪器能清楚显示出吸音不同所带来的音波曲线差异,在仪器中可看到中低频(80~450Hz)在空间中产生的反射会有比较大的幅度,因此造成不稳定的驻波幅度反应,只有经过吸音处理才能把驻波幅度的变化减少。
(图三)
空间比例
上一期我们说过多位声学博士和国际上著名的声学组织提出不同的空间尺寸建议,也就是所谓的最佳空间比例。表二是世界公认、推荐的一些理想环境空间的比例。发烧友打造一间音响室时,如果能参照这些比例尺寸规划,空间处理将事半功倍。
(表二)
其实空间的比例概念对居住环境的设计也是很重要的,但大部分的建筑工程师往往忽略了这一点,这个概念不只可用于建立理想的音响环境,还关系到生活中种种与声音有关的事务。例如,室内的电视机发出的声效和人讲话的声音、噪音控制等。当我们进入一个空间时,一边拍手掌一边环绕著周围走动,打击的声音会产生回音混乱的反射,其实这就是最简单的RT60概念。一间完全未处理的空旷房间,跟另一间有大量吸音的房间,对音响重播而言都不是很理想的,所以我们必须进行处理,残响时间的控制和吸音的处理则是首要之务。
在前几期中,已描述了很多关於声学的基础和计算方式,在下一期中我会与大家分享如何运用空间比例的概念,对各种聆听空间或不对称的空间,以RT60的计算处理进行全面的分析,让您快乐的悠游在立体声世
“物体发声”是指物体的谐振频率的组合产生的音色,通常是固定的;而扬声器发声使靠纸盆振动产生声波,这个声波随着音频电流变化而变化,不是一个固定的频率,如果你不给扬声器供电,敲打纸盆,这时发出的声音就是纸盆的固有音色了。
注意区别音色和谐振频率的关系。
人的声带也是如此,既有自己的音色,也随气流变化而变化声音。