很著名的一句话:“我现在说的话是假话 ”
自相矛盾的故事也是悖论的例子:
有一个同时卖矛和盾的人。他先夸他的盾最坚固,无论什么东西都戳不破;接着又夸他的矛最锐利,无论什么东西都能刺透。旁人问他:如果用他的矛来刺他的盾会有什么结果,他回答不上来,因为两者相互抵触。这是一个既不可以同时为真,也不可以同时为假的命题。前提出现矛盾,也就无法推出结论。
还有关于理发师的悖论
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
如果满意请采纳
一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。如果这个父亲猜“鳄鱼不会将儿子还给他”,就会成为所谓的“悖论”:如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就必须把孩子还给父亲,否则鳄鱼违背了诺言;如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。
1、王宝是一个五岁的小女孩,父母视她为掌上明珠,特别是母亲,经常在她耳边说:“宝贝,妈妈爱你。”小孩子都是好动的,王宝也不例外,每次母亲带她出去玩,她都会制造一些事端来。
为这妈妈没少责怪她,可小孩子的天性是好动好玩。这不又窜祸了,妈妈带她去超市买东西,进了超市,妈妈自顾自的去看商品。
王宝她走到一个卖面粉的地方,商场里的面粉,生粉还有其他什么粉都是并排放在一起的地方,王宝看见那么多白白 的东西,可能是好奇,她就站在那里把那些面粉米饭生粉舀过来舀过去,正玩的开心。
商场的工作人员看到了就过来阻止她 ,她妈妈闻声也走过来,看到这个情景就很生气,对她大声责问,王宝看见那么多大人围着她,妈妈还那么大声责骂她,她一下子吓哭了。
2、李**是一位漂亮姑娘,但却为自己的身材苦恼,1米5几的个头,却有一百二十多斤,为此她立下了一个减肥计划,坚持了一个星期,嫌苦累,把计划书丢到一边去,大吃大喝舒服去。
扩展资料
生活中许多最重要的事实表面上是矛盾的。虽然它们看起来不可能,但随着时间的推移,它们往往会通过经验得到证明。
认为自己还算是个有逻辑的人,所以当面对这些悖论时,一开始是持怀疑态度的。但事实是,生活常常是不合逻辑的,而且有时候简直是自相矛盾,令人匪夷所思。
生活中有很多事情表面上看似乎没有多大意义,而一旦你追根溯源,刨根问底,仔细观察,你还是可以从中领悟到新的启发。
有很多次,当回顾生命中经历的那些事的时候,才清楚每件事的发生都是有迹可循,甚至可以提前阻止发生的。
“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。它包括逻辑学、概率论、数论、几何学、统计学和时间等六个方面的数学悖论.悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
再来几个例子
伊:所有的克里特人都是撒谎者。M:他说的是真的吗?如果他说的是实话,那么克里特人都是撒谎者,而伊壁孟德是克里特人,他必然说了假话。他撒谎了吗?如果他确实撒了谎,那么克里特人就都不是说谎的人,因而伊壁孟德也必然说了真话。他怎么会既撒谎,同时又说真话呢?
M:我们陷入了著名的说谎者悖论之中。下面是它的最简单的形式。甲:这句话是错的。M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。
M:颁发一枚勋章,勋章上写着:禁止授勋!
M:或者涂写一个告示:不准涂写!
M:很多年以前,一台设计用于检验语句正误的计算机中馈入了说谎者逆论。语句:“这句话是错的”。
M:这台可怜的计算机发起狂来,不断地打出对、错、对、错的结果,陷入了无休止的反复中
M:机器受到的难题就像人碰到要解答一个古老的谜?。问题:鸡和鸡蛋,到底先有哪个?M:先有鸡吗?不,它必须从鸡蛋里孵出来,那末先有鸡蛋?不,它必须由鸡生下。好!你陷入了无穷的倒退之中。
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——旅游者:我来这里是要被绞死。M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧
M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
我最喜欢刮脸这个~ 不过这些都是逻辑学部分的
(1)理发师悖论:1919年,罗素把他提出的集合论悖论通俗化如下:萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。请问他该不该给自己刮胡子?
(2)苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”
(3)纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。
(4)上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”
(5)鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。” 请问孩子母亲该如何回答才能保住孩子的性命
(6)老子悖论:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?”
扩展资料:
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
性质
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
根源
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化,即把形式逻辑当作思维方式。
用对称逻辑解“鳄鱼困境悖论”
一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。如果这个父亲猜“鳄鱼不会将儿子还给他”,就会成为所谓的“悖论”:如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就必须把孩子还给父亲,否则鳄鱼违背了诺言;如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。
解悖:鳄鱼“要做什么”是一种心理状态,鳄鱼“把孩子还给父亲”是一种行为,二者在时间上是前后衔接的两个阶段。同样,这个父亲猜“鳄鱼不会将儿子还给他”是鳄鱼心理状态,后来“鳄鱼将儿子还给他”是鳄鱼行为。
这个父亲猜“鳄鱼不会将儿子还给他”这种鳄鱼的心理状态和后来“鳄鱼将儿子还给他”这种鳄鱼行为之间同时存在并不矛盾——正是因为这个父亲猜对了鳄鱼的心理“不把儿子还给他”,所以鳄鱼为了履行诺言必须在行动上把儿子还给他。在这里对称逻辑通过限定时间范围,使语言的内容和语言的对象对称。
参考资料:
关于悖论的理论,经典的例子就是定时炸弹,因为这个悖论是比较出名的十大悖论之一,具体的情况我不太清楚了,因为是好久之前才看到过的,然后现在好像是已经找不到关于这个的题材了。
一、睡美人问题(Sleeping Beauty Problem)
我们让睡美人在星期天入睡,同时抛掷一枚硬币,如果正面朝上,那么睡美人会在星期一被唤醒,回答硬币的朝向问题,然后服用含有失忆剂的药物后继续入睡;如果反面朝上,那么睡美人会在星期一和星期二分别被唤醒,回答硬币的朝向问题,然后服药入睡。接着,人们会在周三唤醒她,实验结束。
问题就是,她会怎么回答硬币的朝向问题,尽管硬币正面朝上的概率为 1/2,但是我们却不知道睡美人会怎么回答,有人认为睡美人回答正面朝上的概率为 1/3,因为她并不知道醒来时是星期几,这便产生了 3 种可能:星期一正面朝上,星期一反面朝上,以及星期二反面朝上,这样一来,反面朝上情况下,她被唤醒的概率要大一些。
二、伽利略悖论(Galileo ’ s Paradox)
大家都熟知伽利略在天文学的成就,然而他也曾涉足数学,发明了无限和正偶数的悖论。首先,伽利略认为,正整数中,有些是偶数,有些不是(没错!)因此,他就猜测,正整数一定比偶数多(好像是对的)。
但是每一个正整数乘以 2 都能得到一个偶数,而每一个偶数除以 2 都能得到一个正整数,那么从无限的数看来,偶数和正整数都是一一对应的,那么,这就说明,在无穷大的世界里,部分可能等于全体!(尽管这听起来是错的)
三、理发店悖论(Barbershop Paradox)
1894 年,《头脑》(英国一家学术杂志)刊登了路易斯 · 卡罗尔(Lewis Carroll)(《爱丽丝梦游仙境》作者)提出的一个名为 " 理发店悖论 ",故事如下:乔叔叔和吉姆叔叔一同去理发店理发,店内有三名理发师:卡尔、艾伦、布朗。吉姆叔叔想卡尔来为自己理发,但是他不确定此刻卡尔是否在店内,理发店营业期间,店内必须有一名理发师,他们知道只要布朗没离开理发店,艾伦也不会离开。
乔叔叔声称自己能够证明卡尔一定在店内:卡尔肯定一直在店内,因为如果艾伦没在工作,布朗肯定也没工作。可问题是,艾伦在工作时,布朗也有可能没在工作,乔叔叔认为,一个假设引出两个相悖的结果,那么卡尔绝对在店内。不过现代逻辑分析家们认为这并不是一个悖论:问题的核心是卡尔有没有在店内工作,如果艾伦也在店内,那谁还去在乎布朗呢?
四、乌鸦悖论(Hempel ’ s Paradox)
乌鸦悖论是关于证据本质的悖论,悖论来自于两句话,有句话说:所有乌鸦都是黑色的。还有与之逻辑相对的一句话:所有不黑的东西都不是乌鸦。一位哲学家说道,首先,我们看到的乌鸦都是黑色的,这为第一句话提供了证据,其次,我们看到的不是黑色的东西,比如一只青苹果,为第二句话提供了证据。
那么悖论是怎么产生的呢?青苹果的例子也能证明 " 所有乌鸦都是黑色的 " 这句话,因为这两种假设在逻辑上是对等的,最为大众接受的说法是,青苹果(或者白天鹅)的确能够证明 " 所有乌鸦都是黑色的 ",但是呢,由于前者提供的论据太少,因此两者的因果关系不甚明显而已。
五、微弱的太阳(The Faint Young Sun Paradox)
目前,我们的太阳比 40 亿年前明亮 40%,这个悖论也就应运而生,如果这种假设成立,那么当时的地球接受的日照比现在少得多,因此,地球表面应是冰雪覆盖的世界。1972 年,著名科学家卡尔 · 萨根(Carl Sagan)提出了这一悖论,许多科学家百思不得其解,因为证据显示,当时地球表面有几处已被海洋覆盖。
温室效应可能是其中的一个原因,如此说来,当时地球上的温室气体是如今的百倍千倍不止,因此我们要找到大量温室气体存在的证据,抱歉,答案是:没有!还有一种说法是 " 星球进化论 ",该理论认为,随着地球上生命的进化,地球本身(如空气的化学组成)也得到了进化。那么还有一种可能就是地球只存在了几千年,哎!谁知道呢?(哈哈开玩笑啦!地球寿命都有几十亿年啦)。
六、鳄鱼的抉择(Crocodile Dilemma)
这是一个关于骗子的悖论,由希腊哲学家欧布里德(Eubulides)提出,悖论如下:一只鳄鱼从母鳄处偷走一只鳄鱼宝宝,它告诉母鳄,如果你猜对我到底归不归还这条鳄鱼宝宝,我就把鳄鱼宝宝还给你,如果母鳄说:" 你会把孩子还给我的。" 那么一切好说,母鳄会追回自己的宝宝。问题是,要是母鳄回答:" 你不会把孩子还给我 " 怎么办?
问题就出在这里,要是鳄鱼归还了鳄鱼宝宝,它就违背了当初的诺言,因为母鳄并没有猜对呀;但是,如果鳄鱼没有归还鳄鱼宝宝的话,它也违背了自己的诺言,因为母鳄猜对了呀。如此一来,两只鳄鱼必定会僵持不下,鳄鱼宝宝只能在鳄鱼的嘴里长大了!也有人出了个馊主意:两只鳄鱼把自己的答案透露给第三方,那么无论怎样,第三方至少能够帮它们旅行自己的诺言吧。
七、" 男孩还是女孩 " 悖论(Boy Or Girl Paradox)
假如一个家庭中有两个孩子,第一个孩子是男孩的概率是 1/2,那么第二个孩子也是男孩的概率有多大呢?很多人会想当然地认为是 1/2,然而真正的答案是 1/3。
因为这里有四种可能:一个哥哥和一个妹妹,一个哥哥和一个弟弟,一个姐姐和一个弟弟,一个姐姐和一个妹妹,由于必须得有一个男孩,所以排除掉一个姐姐和一个妹妹的可能,所以得到的结论是,另一个小孩也是男孩的可能性是 1/3,有些人要反驳了:" 要是两个孩子是双胞胎呢。" 可是双胞胎也不是真正同时落地的呀,看来数学真是一门十分科学的 " 科学 "。
八、" 两个信封 " 问题(Two Envelopes Problem)
" 两个信封 " 问题是蒙提霍尔一个鲜为人知的变体,基本理论为:给你两个装钱的信封,其中一只信封中的钱是另一只的两倍,选择一个信封,打开,此时,你可以选择拿走手上信封里的钱,或者拿走另一个信封,哪种方式获得的钱最多呢?
一开始,你拿到钱多的那个信封的概率为 50%,假定你手上信封里的钱为 Y,那么接下来在计算概率常犯的一个错误就是:1/2 ( 2Y ) + 1/2 ( Y/2 ) = 1.25Y,如此一来,你就会不停捡起下一只信封,因为这么一算,下一只信封的钱永远会比手上信封的钱要多一些,这也是这个问题成为悖论的原因。针对这个问题,如今许多科学家们给出了自己的答案,但是没有一个答案得到多数人的肯定。
九、汤姆生的灯(Thomson ’ s Lamp)
汤姆生是 20 世纪的英国哲学家,他的最主要贡献就是汤姆生的灯悖论,该悖论主要研究 " 超任务 " 现象(要求完成无限连续任务的任一逻辑佯谬)。
悖论内容如下:一盏装有开关按钮的灯,利用按钮不停开灯,关灯,每一次开(关)灯动作用时为上一关(开)灯动作用时的一半,那么在确定时间内,这盏灯是开着的,还是关着的呢?
从 " 无限 " 的本性考虑,我们永远不会知道这盏灯是开着的还是关着的,因为最后的开(关)动作永不存在,这类悖论最早由埃利亚(意大利城市)的芝诺提出," 超任务 " 是一种在逻辑上无解的悖论,然而有些哲学家,如贝纳塞拉夫,仍旧认为汤姆生的灯这种机器在逻辑上是可行的。
十、麦克斯韦妖(Maxwell ’ s Demon)
麦克斯韦妖以 19 世纪的苏格兰物理学家詹姆斯 · 克拉克 · 麦克斯韦命名,麦克斯韦是该悖论的发明者,旨在推翻热力学第二定律,然而牛顿定律可谓坚不可摧,而这一思想便成了一个悖论。
麦克斯韦妖是一个思维实验:一个装满不恒温气体的盒子,盒子中间一堵墙将其分为两个部分,盒子里的妖在墙上开一个洞,使运动较快的分子流动到盒子的左侧空间,这样,这只妖就在盒子内创造了两个空间,一个温度较高,一个温度较低,在热机作用下,温度较高的空间里的分子向较低的空间运动,能量就产生了。然而第二定律认为,孤立系统的熵值恒定不变。看来麦克斯韦妖就和这一定律背道而驰了。
然而,根据第二定律,这只妖不可能在损失自身能量的情况下造成分子流动,该观点由匈牙利物理学家奇拉特提出,有力地驳斥了麦克斯韦妖的理论,论据就是:那只妖在衡量分子运动速度的过程中会损耗能量,此外,这只妖在墙上开洞,以及维持自身运动也会引起盒子内熵值的增加。
谎言者悖论
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。
《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。
人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:
1-2 “我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。它的一个翻版:
1-3 “这句话是错的”
这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。
理发师悖论
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。 反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。
因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。
集合论悖论
“R是所有不包含自身的集合的集合。”
人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。
继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。
书目悖论
一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?
这个悖论与理发师悖论基本一致。
苏格拉底悖论
有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立 “定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。
苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”
“言尽悖”
这是《庄子·齐物论》里庄子说的。后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?我们常说:
1-7 “世界上没有绝对的真理”
我们不知道这句话本身是不是“绝对的真理”。
1-8 “荒谬的真实”
有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。
这些例子都说明,在逻辑上它们都无法摆脱概念自指所带来的恶性循环。有没有进一步的解决办法?在下面一节的最后一部份还将继续探讨。
二分法悖论
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。因此,这个物体永远也到达不了D。
这些结论在实践中不存在,但是在逻辑上无可挑剔。
芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。这就是说感官是不可靠的,没有逻辑可靠。
他认为:“穷尽无限是绝对不可能的”。根据这个运动理论,芝诺还提出了一个类似的运动佯谬:
2-3 “飞矢不动”
在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如:
2-4 “飞鸟之景,未尝动也”
这是中国名家惠施的命题,与“飞矢不动”同工异曲。这就是不可抗拒的推理和不可回避的实事相冲突。
德国哲学家尼采在《希腊悲剧时代的哲学》里有一章《可疑的悖论》,称芝诺的悖论为“否定感官的悖论”。尽管阿基里斯在赛跑中追上起步领先的乌龟完全合乎事实,但为什么“不合逻辑”?因为芝诺运用了“无限”这个概念,这是一种逻辑上的假设,而现实世界里是不可能有无限者存在的,这就出现了假设与现实的矛盾。
“父在母先亡”
这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”或者是“父亲在母亲以前就去世了。”真是左右逢源。
从逻辑顺序上看,上面这两个例子正好是反其道而用。无论正命题还是反命题都可以根据所谓的客观理由进行诡辩,形成自圆其说或诘难。所以葛拉西安在《智慧书:永恒的处世经典》中说:“诡辩是一种欺骗,乍一听,它蛮有道理,并因其刺激、新奇而令人心惊,但随后,当其虚饰之伪装被揭穿,就会自取其辱。”
邓析赎尸诡论
《吕氏春秋》记载了这样一个故事:洧水发了大水,淹死了郑国富户家的一员。尸体被别人打捞起来,富户的家人要求赎回。然而捞到尸体的人要价太高,富户的家人不愿接受,他们找邓析出主意。邓析说:“不用着急,除你之外,他还会卖给谁?”捞到尸体的人等得急了,也去找邓析要主意。邓析却回答:“不要着急,他不从你这里买,还能从谁那里买?”
邓析生在春秋末年,与老子和孔子基本同时,是战国名家的鼻祖,著名的讼师,他的著作已经失传。
同一个事实,邓析却推出了两个相反的结论,每一个听起来都合乎逻辑,但合在一起就荒谬了。邓析是不是希望他们相持一段时间后,双方都可以找到一个可以接受的价格平衡点?我们只能猜测。
“白马非马”
战国时赵国人公孙龙曾经著有《公孙龙子》一书,平原君礼遇甚厚。其“白马非马”和“坚白异同之辩”都是他的著名命题。
据说,公孙龙有一次骑马过关,把关的人对他说:“法令规定马不许过。”公孙龙回答说:“我骑的是白马,白马不是马,这可是两回事啊。”公孙龙的“白马”有没有过关,我们不得而知。从常人的观点来看,守关的兵士八成认为公孙龙是在诡辩。这也是一个逻辑上“莫能与辩”,现实中不能成立的例子。
冯友兰认为《公孙龙子》里的《白马论》对“白马非马”进行了三点论证:
一是强调“马”、“白”、“白马”的内涵不同。“马”的内涵是一种动物,“白”的内涵是一种颜色,“白马”的内涵是一种动物加一种颜色。三者内涵各不相同,所以白马非马。
二是强调“马”、“白马”的外延的不同。“马”的外延包括一切马,不管其颜色的区别;“白马”的外延只包括白马,有颜色区别。外延不同,所以白马非马。
三是强调“马”这个共相与“白马”这个共相的不同。马的共相,是一切马的本质属性,它不包涵颜色,仅只是“马作为马”。共性不同,“马作为马”与“白马作为白马”不同。所以白马非马。
前面我们说到,辩证法是在对付诡辩论的过程中发展起来的。黑格尔在《小逻辑》中说:“辩证法切不可与单纯的诡辩相混淆。诡辩的本质在于孤立起来看事物,把本身片面的、抽象的规定,认为是可靠的。”(《逻辑学概念的进一步规定和部门划分》)
从辩证法的角度看,“白马非马”割断了个别和一般的关系。白马属于个性,特指白颜色的马;马属于一般,具有各种颜色马的共性。公孙龙区分了它们之间的差别,但是又绝对化了这种差别。白马尽管颜色上不同于其他的马,如公孙龙提到的黄马、黑马,但仍然是马。作为共性的“马”寓于作为个性的“白马”之中。“马”作为一般的范畴,包括各种颜色的马,公孙龙的白马自然也不例外。
杀盗非也”
这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非也”归入“惑于用名以乱名”的诡辩。荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是。
简单说吧:悖论就是在一个矛盾的问题中矛盾双方都不能成立(或都能成立),,即在矛盾双方的选择上陷入两难境地。
如:1,上帝是万能的,他能制造出他搬不动的石头吗? 选能,他搬不动那石头,他显然不是万能的,选不能,他还不是万能的。
2,一个强盗要杀一个人,强盗说:‘你猜我会不会杀你?猜对了我就放了你,猜错了我就杀了你。’这人说:‘你会杀我。’强盗陷入两难境地。如果杀他,说明他猜对了,不应该杀;如果不杀他,又说明他猜错了,反而应该杀他。强盗没法选择,就放了他。