当前位置:灰灰分享 > 慢生活 > 数学建模在生活中的应用

数学建模在生活中的应用

  • 发布:2024-10-05 08:13:26
  • 20次

数学建模在生活中的应用:解决社会生产中的实际问题,接受市场的考验。

数学建模在生活中的应用

数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务。

目前,北京交通大学、北京邮电大学、中国农业大学等在校学生组建了国内第一支数学建模应用团队,在北京交通大学数学应用和建模研究所的名下展开了数学建模应用推广和应用。

数学建模竞赛:

1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。

十几年来这项竞赛的规模以平均年增长25%以上的速度发展。从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。

生活中的数学问题举例

://wenku.baidu/view/34eb8d6a561252d380eb6e07.html

(B) 足球排名次问题(清华大学:蔡大用) 1994年 (A) 逢山开路问题(西安电子科技大学:何大可) (B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年 (A) 最优策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 19年 (A) 零件参数设计问题(清华大学:姜启源) (B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平) (B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) (C) 煤矸石堆积问题(太原理工大学:贾晓峰) (D) 钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B) 钢管订购和运输问题(武汉大学:费甫生) (C) 飞越北极问题(复旦大学:谭永基) (D) 空洞探测问题(东北电力学院:关信) 2001年 (A) 血管的三维重建问题(浙江大学:汪国昭) (B) 公交车调度问题(清华大学:谭泽光) (C) 基金使用问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B) **中的数学问题(解放军信息工程大学:韩中庚) (C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (D) 赛程安排问题(清华大学:姜启源) 2003年 (A) SARS的传播问题(组委会) (B) 露天矿生产的车辆安排问题(吉林大学:方沛辰) (C) SARS的传播问题(组委会) (D) 抢渡长江问题(华中农业大学:殷建肃) 2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志) (B) 电力市场的输电阻塞管理问题(浙江大学:刘康生) (C) 酒后开车问题(清华大学:姜启源) (D) 招聘公务员问题(解放军信息工程大学:韩中庚) 2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚) (B) DVD在线租赁问题(清华大学:谢金星等) (C) 雨量预报方法的评价问题(复旦大学:谭永基) (D) DVD在线租赁问题(清华大学:谢金星等) 2006年 (A) 出版社的配置问题(北京工业大学:孟大志) (B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍) (C) 易拉罐的优化设计问题(北京理工大学:叶其孝) (D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚) 2007年 (A) 中国人口增长预测 (B) 乘公交,看奥运 (C) 手机“套餐”优惠几何 (D) 体能测试时间安排 2008年 (A)数码相机定位, (B)高等教育学费标准探讨, (C)地面搜索, (D)NBA赛程的分析与评价 2009年 (A)制动器试验台的控制方法分析 (B)眼科病床的合理安排 (C)卫星和飞船的跟踪测控 (D)会议筹备

初中生的数学建模活动包含哪些步骤

                                      就比如说,抽奖啊,可以算一下概率,、                            又比如,照相时的站法,有多少种,这个要用到排列组合。                                  计算某地到某地的距离啊。                                                     又算,考试总分,平均数,方差,标准差,估计某个班的总体水平,                                        算面积的。等等...多的多,只有你想不到的,没有你不知道啊。                                      

初中数学有几种数学模型

初中生的数学建模活动包含步骤如下:

1、理解问题:首先,你需要明确和理解实际问题的本质。这需要你具有对问题的敏感性和对数学概念的理解。抽象和简化问题:接着,你需要将实际问题抽象成数学问题。这通常涉及到将问题的主要因素从次要因素中分离出来,并对其进行简化。

2、建立模型:一旦你理解了问题并抽象出其主要特征,你就可以建立数学模型了。这可能涉及到各种数学工具和技巧,例如代数、几何、概率等。求解模型:使用你熟悉的数学工具来解决建立的模型。这可能包括代数方程、微积分、统计等。

3、验证和修正模型:最后,你需要验证模型的准确性,并根据实际情况对模型进行修正。这通常涉及到将模型的解与实际问题的结果进行比较。

4、生活背景:在解一次函数时,可以通过设置不同的生活背景,引导自主探究,合作交流,培养学生的数学建模意识,实现知识的构建。多向思维:注重多向思维,拓宽学生建模思路。

数学建模的概念及相关知识

1、数学建模是指将实际问题抽象成数学模型,并通过对模型的分析和计算来解决实际问题的过程。它是现代科学和工程领域中广泛应用的一种方法,也是解决复杂问题的重要手段之一。

2、数学建模的应用范围广泛,涵盖了自然科学、社会科学、工程技术等各个领域。例如,在物理学中,数学建模可以用来描述物理现象和预测未来的发展;在经济学中,数学建模可以用来分析市场供求关系和预测经济走势;在工程学中,数学建模可以用来设计和优化产品结构和工艺流程等。

3、虽然数学建模具有很多优点和应用价值,但它也存在一些挑战和困难。例如,建立准确的数学模型需要具备深厚的数学知识和技能;同时,由于实际问题的复杂性和不确定性,模型的求解和分析也可能存在误差和不确定性。

新课标

初中数学建模的常见类型

全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。

一、建立“方程(组)”模型

现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决

例1(2007年深圳市中考试题)A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?

解:设甲工程队每周铺设管道x公里,则乙工程队每周铺设管道(x+1)公里。

依题意得:

解得x1=2, x2=-3

经检验x1=2,x2=-3都是原方程的根。

但x2=-3不符合题意,舍去。

∴x+1=3

答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。

二、建立“不等式(组)”模型

现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。

例2 (2007年茂名市中考试题)某体育用品商场购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:

品名 厂家批发价(元/只) 商场零价(元/只)

篮球 130 160

排球 100 120

(1)该购员最多可购进篮球多少只?

(2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则购员至少要购篮球多少只?该商场最多可盈利多少元?

解:(1)该购员最多可购进篮球x只,则排球为(100-x)只,

依题意得:130x+100(100-x)≤11815

解得x≤60.5

∵x是正整数,∴x=60

答:购进篮球和排球共100只时,该购员最多可购进篮球60只。

(2)该购员至少要购进篮球x只,则排球为(100-x)只,

依题意得:30x+20(100-x)≥2580

解得x≥58

由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球平均每天销售40只,

商场可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)

答:购员至少要购进篮球58只,该商场最多可盈利2600元。

三、建立“函数”模型

函数反映了事物间的广泛联系,揭示了现实世界众多的数量关系及运动规律。现实生活中,诸如最大获利、用料价造、最佳投资、最小成本、方案最优化问题,常可建立函数模型求解。

例3 (2007年贵州贵阳市中考试题)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。

(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式。

(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式。

(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

解:(1)y=90-3(x-50) 化简,得y=-3x+240

(2)w=(x-40)(-3x+240)

=-3x2+360x-9600

(3)w=-3x2+360x-9600

= -3(x-60)2+1125

∵a=-3<0 ∴抛物线开口向下

当x=60时,w有最大值,又x<60,w随x的增大而增大,

∴当x=55时,w的最大值为1125元,

∴当每箱苹果的销售价为55元时,可以获得最大利润1125元的最大利润

四、建立“几何”模型

几何与人类生活和实际密切相关,诸如测量、航海、建筑、工程定位、道路拱桥设计等涉及一定图形的性质时,常需建立“几何模型,把实际问题转化为几何问题加以解决

例4 (2007年广西壮族自治区南宁市中考试题)如图点P表示广场上的一盏照明灯。

(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);

(2)若小丽到灯柱MO的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离;结果精确到0.1米;参考数据:tan55 °≈1.428,sin55°≈0.819,cos55°≈0.574。

解:(1)如图,线段AC是小敏的影子。

(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ。在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3(米)。

∵tan55°=

∴PD=3 tan55°≈4.3(米)

∵DF=QB=1.6米

∴PF=PD+DF=4.3+1.6=5.9(米)。

答:照明灯到地面的距离为5.9米。

五、建立“统计”模型

统计知识在自然科学、经济、人文、管理、工程技术等众多领域有着越来越多的应用。诸如公司招聘、人口统计、各类投标选举等问题,常要将实际问题转化为“统计”模型,利用有关统计知识加以解决。

例5 (2007年后湖北省荆州市中考试题)为了了解全市今年8万名初中毕业生的体育升学考试成绩状况(满分为30分,得分均是整数),从中随机抽取了部分学生的体育生学考试成绩制成下面频数分布直方图(尚不完整),已知第一小组的频率为0.12。回答下列问题:

(1)在这个问题中,总体是 ,样本容量为

(2)第四小组的频率为 ,请补全频数分布直方图。

(3)被抽取的样本的中位数落在第 小组内。

(4)若成绩在24分以上的为“优秀”,请估计今年全市初中毕业生的体育升学考试成绩为“优秀”的人数。

解:(1)8万名初中毕业生的体育升学考试 成绩, =500。

(2)0.26,补图如图所示。

(3)三.

(4)由样本知优秀率为 100%=28%

∴估计8万名初中毕业生的体育升学成绩优秀的人数为28%×80000=22400(人)。

六、建立“概率”模型

概率在社会生活及科学领域中用途非常广泛,诸如游戏公平问题、**中奖问题、预测球队胜负等问题,常可建立概率模型求解。

例6 (2007年辽宁省中考试题)四张质地相同的卡片如图所示。将卡片洗匀后,背面朝上放置在桌面上。

(1) 求随机抽取一张卡片,恰好得到数字2的概率

(2) 小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图。你认为这个游戏公平吗?请用列表法或画树状图法说明理由。若认为不公平,请你修改法则,使游戏变得公平。

解:(1)P(抽到2)=

(2) 根据题意可列表

2 2 3 6

2 22 22 23 26

2 22 22 23 26

3 32 32 33 36

6 62 62 63 66

画树状图如下:

从表(或树状图)中可以看出所有可能的结果共有16种,符号条件的有10种,∴P(两位数不超过32)= =,∴游戏不公平。

调整规则如下。

方法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平。

方法二:游戏规则改为抽到的两位数中,不超过32的得3分,抽到的两位数超过32的得5分。

方法三:游戏规则改为组成的两位数中,若个位数字是2,则小贝胜,反之小晶胜。

阅读全文阅读全文

猜你喜欢

随便看看