生活中的数学问题有如下:
1、烙饼问题:妈妈烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟?
2、袜子问题,抽屉里有5双不同颜色的袜子,没开灯,要拿出一双同色的袜子,从中最多需要摸出多少只?
3、桌子问题,一张方桌,砍掉一个角还有几个角?
4、切豆腐问题:一块豆腐切三刀,最多能切几块?
5、切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?
6、竹竿问题:5米长的竹竿能不能通过一米高的门?
7、纸盒问题:边长一米的方盒子能不能放下1.5米的木棍?
8、时钟问题:12小时,时钟和分针重复多少次?
1、抽屉原理
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
这里用到的是抽屉原理,抽屉原理的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。?
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。?
2、涨跌停现象
设你有10万元:
第一种情况:第一天涨停后是11万元,第二天跌停后剩下9.9万元。
第二种情况:第一天跌停后是9万元,第二天涨停后还是9.9万元。
3、补仓或定投现象
设一个基金净值10元的时候,你买入了1万元。第二个月,基金净值跌到5元的时候,你又买了1万元。
请问:你的持仓成本是多少? A.7.5元 B.6.67元
正确答案:持仓成本是6.67元。
这就是基金定投的魅力,可以让你的持仓成本大幅降低。
4、蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
5、丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!?
6、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
7、保本的资产组合
以下两种投资产品:
设你有100万元,你投资80万到资产A,投资20万到资产B。
这样你就做出了一个保本的投资组合:最差收益为零,最佳收益为12%。
8、一个带有性质的游戏:主事者将4种不同颜色的球,红、黄、蓝、白每样5个,总共20个,全部放进箱子里,参与者从里面任意摸出10个球。如果4种颜色的组合是5500,就能得到一台莱卡照相机;如果是5410,就送你一条中华烟;但有两个组合是你反过来要给他钱的:一个是3322,一个是4321。
结果玩游戏的人到那儿一抓,经常是3322或4321。这是一道非常容易计算的数学题。西安电子科技大学校长梁昌洪是位数学家,他在学校里组织了几百个学生测试,又在电脑上算,结果都一样:3322和4321所占的比率最高,接近30%;而5500呢,只占十几万分之一。
9、收益率现象:如果你用10万元买了一只股票,涨了100%后是20万;但要再跌50%,就又回到10万元了。要知道,跌50%可比涨100%简单多了。
10、零与无穷大的迷思:“0”也是我感兴趣的数字。我觉得“0”从哲学上说,就是中国人所说的“无”。万物生于有、有生于无,所以无是本源。无当然是本源,因为我们每一个人都生于无。在我们被母亲怀胎之前,我们就是无。
中国人在这个“无”字上是很下功夫的。老子主张无为、无欲,“为学日益,为道日损,损之又损,以至于无为。无为而无不为。”
为什么要“无为无不为”呢?因为有生于无,无又不是都有。所以中国古人又说,无非有,无是没有;无非无,无也不是永远无;无因为能够变成有,所以无非非无,无不是把无给否定了,无本身是不否定无的。无为什么能够变成有呢?因为有了无穷大的帮忙,无和无穷大结合起来,就有可能产生出“有”来。
0和无穷大之间,有和无之间,形成了各种悖论。数学悖论里最基本的问题就是,如果你承认有,那0也是一种有的方式。如果0变成了有的方式,那就太受鼓舞了。
扩展资料:
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
参考资料:
数学在生活中的运用有很多。
1、老家种菜地,需要用铁丝围一个长方形,要多长的铁丝?
这个用的数学实例:长方形周长=(长+宽)x2
量出菜地的长和宽,用数学公式求出周长,就是需要铁丝的长度。
2、家里面装修,需要准备多少块地板砖?
用到的数学实例:家中的地面面积以及一块地板砖的面积
算出家中的实际用地面积,然后算出地板砖的面积,用家中地面面积除以一块地板砖的面积就是需要购买的地板砖的块数。
3、超市的抽奖活动。
用到的数学实例:数学中的概率问题。
通过对概率的计算,超市店家可以自主设置一等奖多少名,二等奖多少名。
4、去菜市场买菜的问题。
买了一堆东西,结账的时候,往往会遇到找钱这个事情,数学计算能力好的人,可以很快算出需要找回多少钱。
5、上学放学路线问题。
用到的数学原型:两点之间,线段最短的问题。虽然很简单,但也是最常见的数学问题。
如下:
1、烙饼问题:妈妈烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟?
2、袜子问题,抽屉里有5双不同颜色的袜子,没开灯,要拿出一双同色的袜子,从中最多需要摸出多少只?
3、鸡蛋问题:小张卖鸡蛋,一篮鸡蛋,第一个人来买走一半,小张再送他一个、第二个人又买走一半,小张又送他一个鸡蛋、第三个人又买一半的鸡蛋,小张再送他一个、第四个人来买一半,小张再送他一个,鸡蛋正好买完!小张总共有几个鸡蛋?
4、桌子问题,一张方桌,砍掉一个角还有几个角?
5、切豆腐问题:一块豆腐切三刀,最多能切几块
6、切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?
7、竹竿问题:5米长的竹竿能不能通过一米高的门?
8、纸盒问题:边长一米的方盒子能不能放下1.5米的木棍?
9、时钟问题:12小时,时钟和分针重复多少次?