数学建模是数学分支,作用是根据结果去解决实际问题。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
应用:
自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。
经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
对策论亦称竞赛论或博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。
在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对抗性质的行为称为 对策行为 。在这类行为中。参加斗争或竞争的各方各自具有不同的目标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。
对策问题的特征是参与者为利益相互冲突的各方,其结局不取决于其中任意一方的努力而是各方所采取的策略的综合结果。
先看一个大家都熟悉的例子。
表1 各种情况对应的判刑年数
我们从这个问题中看一看对策问题的基本要素
在一个对策行为(或一局对策)中,有权决定自己行动方案的对策参加者,称为局中人。通常用 表示局中人的集合.如果有 个局中人,则 。一般要求一个对策中至少要有两个局中人。在例 1 中,局中人是 两名疑犯。
一局对策中,可供局中人选择的一个实际可行的完整的行动方案称为一个策略。参加对策的每一局中人 ,都有自己的策略集 。一般,每一局中人的策略集中至少应包括两个策略。
再一局对策中,各局中人所选定的策略形成的策略组称为一个局势,即若 是第 个局中人的一个策略,则 个局中人的策略组
就是一个局势。全体局势的集合 可用各局中人策略集的笛卡尔积表示,即:
当局势出现后,对策的结果也就确定了。也就是说,对任一局势, ,局中人 可以得到一个赢得 。显然, 是局势 的函数,称之为第 个局中人的赢得函数。这样,就得到一个向量赢得函数 。
本节我们只讨论有两名局中人的对策问题,其结果可以推广到一般的对策模型中去。
零和对策是一类特殊的对策问题。在这类对策中,只有两名局中人,每个局中人都只有有限个策略可供选择。在任一纯局势下,两个局中人的赢得之和总是等于零,即双方的利益是激烈对抗的。
设局中人Ⅰ,Ⅱ的策略集分别为:
当局中人Ⅰ选定策略 和局中人Ⅱ选定策略 后,就形成了一个局势 ,可见这样的局势共有 个。对任一局势 ,记局中人Ⅰ的赢得值为 ,并称:
为局中人Ⅰ的赢得矩阵(或为局中人Ⅱ的支付矩阵)。由于假定假定对策为零和的,故局中人Ⅱ的赢得矩阵就是 ,一个零和对策就给定了,零和对策又可称为矩阵对策并可简记成:
从 中可以看出,若局中人Ⅰ希望获得最大盈利30,需采用策略 ,但此时若局中人Ⅱ采用策略 ,局中人Ⅰ采取策略
时,最坏的赢得结果分别是:
其中最好的可能为 。如果局中人Ⅰ采取策略 ,无论局中人Ⅱ采取什么策略,局中人Ⅰ的赢得君不悔少于2.
局中人Ⅱ采取各方案的最大损失为 , ,和 。当局中人Ⅱ采取策略 ,其损失不会超过2。注意到在赢得矩阵矩阵,2即是所在航中的最小元素又是所在列中的最大元素。此时,只要对方不改变策略,任一局中人都不可能通过变换策略来增大赢得或减少损失,成这样的局势为对策的一个 稳定点 或 稳定解 。
给定一个对策 ,如何判断它是否有鞍点呢?为了回答这一问题,先引入下面的极大极小原理。
具有稳定解的零和问题是一类特别简单的对策问题,它所对应的赢得矩阵存在鞍点,任一局中人都不可能通过自己单方面的努力来改进结果。然而,在实际遇到的零和对策中更典型的是
的情况。由于矩阵中不存在鞍点,此时在只使用纯策略的范围内,对策问题无解,下面我们引进零和对策的混合策略。
设局中人Ⅰ用概率 选用策略 ,局中人Ⅱ用概率 选用策略 , ,记 ,则局中人Ⅰ的期望赢得为 ,简单记:
使用纯策略的对策问题(具有稳定解的对策问题)可以看成使用混合策略的对策问题的特殊情况,相当于以概率 1 选取其中某一策略,以概率 0 选取其余策略。
解:双方可选择的策略集分别是:
轰炸机Ⅰ装炸弹,Ⅱ护航。
轰炸机Ⅱ装炸弹,Ⅰ护航。
赢得矩阵 , 为 方采取策略 而 方采取策略 时,轰炸机轰炸 方指挥部的概率,由题意可计算出:
即赢得矩阵:
易求得 。由于 ,矩阵 不存在鞍点,应当求最佳混合策略。
现设 以概率 取策略 ,以概率 取策略 ; 以概率 取策略 ,以概率 取策略 。
记零和对策 的解集为 ,下面三个定理是关于对策解集性质的主要结果:
数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.
数学模型一般是实际事物的一种数学简化.它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别.要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等.为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代.
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的.数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿.经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术.培养学生应用数学的意识和能力已经成为数学教学的一个重要方面.
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步.建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题.这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面.数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之.为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程.为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作.通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题.数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果.接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能.培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等.
数学建模介绍
1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象
比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物
理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物
的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等
等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是
数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际
物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化
着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述
解释,预计或分析出与实际事物相关的规律。
top
数学建模软件介绍
一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。
1.MATLAB的概况
MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处
理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等
语言完相同的事情简捷得多.
当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具
包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强
的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改
或加入自己编写程序构造新的专用工具包.
2.Mathematica的概况
Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于
1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以
及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级
科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广
泛使用。
Mathematica 的特色
·具有高阶的演算方法和丰富的数学函数库和庞大的数学知识库,让 Mathematica 5 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比Matlab R13做得更快更好,提供业界最精确的数值运算结果。
·Mathematica不但可以做数值计算,还提供最优秀的可设计的符号运算。
·丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函数、数值分析、机率统计等等问题。
·Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法,结果呈现可视化。
·Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成,提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好的兼容性。
·可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高级语言接口功能,使得程序开发更方便。
·Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰富的帮助功能,让使用者现学现卖。强大的功能,简 单的操作,非常容易学习特点,可以最有效的缩短研发时间。
3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中
LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和
LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。
模型建立语言和求解引擎的整合
LINGO是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。LINGO提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
■ 简单的模型表示
LINGO可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。
■ 方便的数据输入和输出选择
LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求解结果直接输出到数据库或工作表。
■ 强大的求解引擎
LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和整数最佳化。
■ Model Interactively or Create Turn-key Applications
LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界面可供使用者由撰写的程序中呼叫。
■ 广泛的文件和HELP功能
LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功能定义。
4.SAS软件概况
SAS系统全称为Statistics Analysis System,最早由北卡罗来纳大学的两位生物统计学研究生编制,并于1976年成立了SAS软件研究所,正式推出了SAS软件。SAS是用于决策支持的大型集成信息系统,但该软件系统最早的功能限于统计分析,至今,统计分析功能也仍是它的重要组成部分和核心功能。SAS现在的版本为9.0版,大小约为1G。经过多年的发展,SAS已被全世界120多个国家和地区的近三万家机构所采用,直接用户则超过三百万人,遍及金融、医药卫生、生产、运输、通讯、政府和教育科研等领域。在英美等国,能熟练使用SAS进行统计分析是许多公司和科研机构选材的条件之一。在数据处理和统计分析领域,SAS系统被誉为国际上的标准软件系统,并在96~97年度被评选为建立数据库的首选产品。堪称统计软件界的巨无霸。在此仅举一例如下:在以苛刻严格著称于世的美国FDA新药审批程序中,新药试验结果的统计分析规定只能用SAS进行,其他软件的计算结果一律无效!哪怕只是简单的均数和标准差也不行!由此可见SAS的权威地位。
SAS系统是一个组合软件系统,它由多个功能模块组合而成,其基本部分是BASE SAS模块。BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。它除可单独存在外,也可与其他产品或模块共同构成一个完整的系统。各模块的安装及更新都可通过其安装程序非常方便地进行。SAS系统具有灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能:SAS/STAT(统计分析模块)、SAS/GRAPH(绘图模块)、SAS/QC(质量控制模块)、SAS/ETS(经济计量学和时间序列分析模块)、SAS/OR(运筹学模块)、SAS/IML(交互式矩阵程序设计语言模块)、SAS/FSP(快速数据处理的交互式菜单系统模块)、SAS/AF(交互式全屏幕软件应用系统模块)等等。SAS有一个智能型绘图系统,不仅能绘各种统计图,还能绘出地图。SAS提供多个统计过程,每个过程均含有极丰富的任选项。用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。此外,SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使用户能方便地实现特殊统计要求。