这个问题你要第一弄明白答案中,每一个未知因素如x和y所代表的含义,并且要注意其中一个Max后面的一个算式,这个算式是求的整个收益的问题,就是假设未知因素是已知的,在这种情况下,所得的利润。(如果这一块不明白可以发信息)
下面就是公式一:它来源于“原料丁的供应量最多为50吨”这句话,就是求的你的最多可以使用原料丁的量,这个不能超出50这个数的限制;
公式二:来源于“产品A、B的市场需求分别为100,200吨”这句话,因为有个市场的需求量,由于要求的你利润最大化,所以必须你所生产的不能超出市场的需求量,不能A产品超出了100,但是B产品又没有达到200这个数值,这样的话你就浪费了原料,不能使产品的生产最大化,因此这是一个限制项;
公式三:来源于“含硫量分别是3,1,2,1(%)”对含硫量的限制,由于两种产品的含硫量不同,限制分别需要使用两个公式,并且由于A、B产品的配置不同,因此对含硫量计算时分子和分母的各不相同,所以使用的未知因数不同,其中对于A产品的计算你应该很清楚,知道怎么计算出来的,对于B产品的那个式子是将B产品的不同参数带入,简化之后,换算出来的。
第四条:由于答案中设的x1、x2、x4是甲乙丁所占的比例,因此在混合池中的原料可以看成一个整体,所以,甲乙丁的比例之和是1,就有了x1+x2+x3=1这个式子,由于所有设置的因数均为实际中的使用或者是实际存在的,因此有了每个因数大于等于0这个限制。
对于LINGO这个东西我不是很明白,应该是一个软件,给你下了个这个东西的解释,你参考一下,看看能不能自学:
LINGO LINGO是Linear INteractive and General Optimizer的缩写,即“交互式的线性和通用优化求解器”,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等。其特色在于可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。
一般地,使用LINGO 求解运筹学问题可以分为以下两个步骤来完成:
1)根据实际问题,建立数学模型,即使用数学建模的方法建立优化模型;
2)根据优化模型,利用LINGO 来求解模型。主要是根据LINGO 软件,把数学模型转译成计算机语言,借助于计算机来求解。
例题:在线性规划中的应用max Z =5 X1+3 X2+6X3,
s.t. X1 +2 X2 + X3 ≤18
2 X1 + X2 +3 X3 =16
X1 + X2 + X3 =10
X1 ,X2 ≥0 , X3 为自由变量
应用LINGO 来求解该模型,只需要在 lingo窗口中输入以下信息即可:
max=5?x1 +3?x2 +6?x3 ;
x1 +2?x2 + x3 <=18 ;
2?x1 + x2+3?x3 =16 ;
x1 + x2 + x3 =10 ;
@free( x3) ;
然后按运行按钮,得到模型最优解,具体如下:
Objective value: 46.00000
Variable Value Reduced Cost
x1 14.00000 0.000000
x2 0.000000 1.000000
x3 -4 .000000 0.000000
由此可知,当 x1 =14 , x2 =0 , x3 =-4 时,模型得到最优值,且最优值为 46。
说明:在利用LINGO 求解线性规划时,如自变量都为非负的话,在LINGO 中输入的信息和模型基本相同;如自变量为自由变量,可以使用函数 @free来把系统默认的非负变量定义自由变量,如实例一中的 x3。
LINGO
LINGO全称是Linear INteractive and General Optimizer的缩写---交互式的线性和通用优化求解器。它是一套设计用来帮助您快速,方便和有效的构建和求解线性,非线性,和整数最优化模型的功能全面的工具.包括功能强大的建模语言,建立和编辑问题的 全功能环境,读取和写入Excel和数据库的功能,和一系列完全内置的求解程序.
运行环境: Win9x/NT/2000/XP/2003
软件类别: 国外软件/工具软件/计算工具
软件语言: 英文
LINGO综述
Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
1简单的模型表示
Lingo 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。模型更加容易构建,更容易理解,因此也更容易维护。
2方便的数据输入和输出选择
Lingo 建立的模型可以直接从数据库或工作表获取资料。同样地,Lingo 可以将求解结果直接输出到数据库或工作表。使得您能够在您选择的应用程序中生成报告.
3强大的求解器
LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题.您甚至不需要指定或启动特定的求解器,因为LINGO会读取您的方程式并自动选择合适的求解器.
4交互式模型或创建Turn-key应用程序
您能够在LINGO内创建和求解模型,或您能够从您自己编写的应用程序中直接调用LINGO.对于开发交互式模型,LINGO提供了一整套建模环境来构建,求解和分析您的模型.对于构建turn-key解决方案,LINGO提供的可调用的DLL和OLE界面能够从用户自己写的程序中被调用.LINGO也能够从Excel宏或数据库应用程序中被直接调用.
好吧?给你一道我做的数学建模题?比较简单?线性规划类型
(1)i)设生产A1产品x1桶,生产A2产品x2桶
目标函数:?max72*x1+*x2
约束条件:12*x1+8x*2≤480;
x1+x2≤50; 0≤3*x1≤100;x2≥0;x1,x2为整数。
LINGO编程如下:
model:
sets:row/1..2/:b;
col/1..2/:c,x,l,u;
matrix(row,col):A;
endsets
max=@sum(col:c*x);
@for(col:@?gin(x));
@for(row(i):
@sum(col(j):A(i,j)*x(j))<=b(i));
data:
c=72,;
b=480,50;
A=12,8,
1,1;
l=0,0;
u=100,500;
enddata
end
结果:
得到x1=20,x3=30;?每天可赚到3360元?原料,时间都没有剩余,加工能力剩余40
由于原料增长1单位,利润增加48元,35<48元故应该作这项投资,购买50桶牛奶,生产A产品20桶,B产品30桶。
ii)由上题lingo结果?时间增长1单位,利润增加2元。故付给临时工人的工资最多是每小时2元。
iii)由上题lingo结果?x1的系数范围在(,96)之间,所以x1的系数72增长到90的时候?不用改变生产计划。
(2)i)设生产A1产品x1,生产A2产品x2,生产B1产品x3,生产B2产品x4?A1加工成B1?x5?A2加工成B2?x6
目标函数:?max24*x1+16*x2+44*x3+32*x4-3*x5-3*x6
约束条件:(x1?+x5)/3+(x2+x6)/4≤50;
x1+x5≤100; 4*(x1+x5)+2*(x2+x6)+2*x5+2*x6≤480;x1=0.8*5;?x2=0.75*x6;
x1…x6≥0;x1…x6为整数。
LINGO编程如下:
model:
sets:row/1..3/:b;
col/1..6/:c,x;
matrix(row,col):A;
endsets
max=@sum(col:c*x);
@for(col:@?gin(x));
@for(row(i):
@sum(col(j):A(i,j)*x(j))<=b(i));
data:
c=24,16,44,32,-3,-3;
b=600,100,480;
A=4,3,0,0,4,3,
1,0,0,0,1,0,
4,2,0,0,6,4;
enddata
end
结果:
得到?max=3460.8?x1=8?x2=168?x3=19.2?x5=24?其他x为0
生产8桶A1并把所有24kgA1转化成B1?生产42桶A2?
i)?增加一桶牛奶可增加利润?3.16*12=37.92?增加一小时可增加利润3.26?故应该做这项投资。150元可增加5桶牛奶?或赚回?37.92*5=189.6元?150元可增加50小时?或赚回?3.26*50=163元?故应该投资牛奶?获得利润最大
ii)?根据上题lingo结果?B1?获利下降10%?B2获利上升10%都超出了?x3?x4的系数范围,故对计划有影响,生产计划应该重新制定。
数学建模论文
题 目 生活中的数学建模问题
学 院
专业班级
学生姓名
成 绩
年 月 日
摘要 钢铁、煤炭、水电等生活物资从若干供应点运送到一些需求点,怎样安排输送
方案使利润最大?各种类型的货物装箱,由于受体积、重量等的限制,如何相互搭配装载,使获利最高?若干项任务分给一些候选人来完成,因为每个人的专长不同,他们完成任务的效益就不一样,如何分派使获得的总效益最大?本文将通过以下的例子讨论用数学建模解决这些问题的方法。
关键词:获利最多,0-1变量
一. 自来水输送问题
问题 某市有甲、乙、丙、丁四个居民区,自来水由A,B,C三个水库供应。四个区每天必须得到保证的基本生活用水量分别为80,50,10,20千吨,但由于水源紧张,三个水库每天 只能分别供应60,70,40千吨自来水。由于地理位置的差别,自来水公司从各水库向各区送水所需付出的引水管理费用不同(见下表),其他管理费用都是400元每千吨。根据公司规定,各区用户按照统一标准950元每千吨收费。此外,四个区都向公司申请了额外用水量,分别为10,20,30,50千吨。该公司应如何分配供水量,才能获利更多?
引水管理费(元每千吨) 甲 乙 丙 丁
A 160 130 220 170
B 140 130 190 150
C 190 200 230 ----
问题分析
分配供水两就是安排从三个水库向四个区供水的方案,目标是获利最多,而从题目给出的数据看,A,B,C三个水可的供水量170千吨,不够四个区的基本生活用水量与额外用水量之和270千吨,因而总能全部卖出并获利,于是自来水公司每天的总收入是950*(60+70+40)=161500元,与送水方案无关。同样,公司每天的其他管理费为400*(60+70+40)=68000元也与送水方案无关。所以要是利润最大,只须是引水管理费最小即可。另外,送水方案自然要受三个水可的供水量和四个取得需求量的限制。
模型建立
决策变量为A、B、C、三个水库(i=1,2,3)分别向甲、乙、丙、丁四个小区(j=1,2,3,4)的供水量。设水库i向j的日供水量为xij。由于C水库鱼定去之间没有输水管道,即X34=0,因此只有11个决策变量。
由上分析,问题的目标可以从获利最多转化为引水管理费最少,于是有
min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;
约束条件有两类:一类是水库的供应量限制,另一类是各区的需求量限制。由于供水量总能卖出并获利,水库的供应量限制可以表示为
x11+x12+x13+x14=60;
x21+x22+x23+x24=70;
x31+x32+x33=40;
考虑到歌曲的基本用水量月外用水量,需求量限制可以表示为
80<=x21+x11+x31;
50<=x12+x22+x32;
10<=x13+x23+x33;
20<=x14+x24;
x21+x11+x31<=90;
x12+x22+x32<=70;
x13+x23+x33<=40;
x14+x24<=70;
模型求解
将以上式子,输入LINGO求解,得到如下输出:
Optimal solution found at step: 10
Objective value: 25800.00
Variable Value Reduced Cost
X11 0.0000000 20.00000
X12 60.00000 0.0000000
X13 0.0000000 40.00000
X14 0.0000000 20.00000
X21 50.00000 0.0000000
X22 0.0000000 0.0000000
X23 0.0000000 10.00000
X24 20.00000 0.0000000
X31 30.00000 0.0000000
X32 0.0000000 20.00000
X33 10.00000 0.0000000
送水方案为:A水库向乙区供水60千吨,B水库甲区、丁区分别供水50,20千吨,C水库向甲、丙分别供水30,10千吨。引水管理费为25800元,利润为161500-68000-25800=67700元。
二. 货机装运
问题 某架火机油三个货舱:前舱、中舱、后舱。三个货舱所能装载的货物最大量的体积都有限,如下表所示,并且,为了保持飞机的平衡,三个货舱中世纪装在货物的重量必须与其最大容许重量成比例。
前舱 中舱 后舱
重量限制(吨) 15 26 12
体积限制(立方米) 8000 9000 6000
现有四类货物供该伙计本次飞行装运,其有关信息如下表所示,最后一列之装运后所获得的利润。应如何安排装运,使货机本次飞行获利最大?
重量(吨) 空间 利润(元每千吨)
货物1 20 480 3500
货物2 18 650 4000
货物3 35 600 3500
货物4 15 390 3000
模型假设 问题中没有对货物装运提出其他要求,我们可以作如下假设:
(1) 每种货物可以分割到任意小;
(2) 每种货物可以在一个或多个货舱中任意分布;
(3) 多种货物可以混装,并保证不留空隙。
模型建立
决策变量:用Xij表示第i种货物装入第j个货舱的重量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。
决策目标是最大化利润,即
max=3500*(x11+x12+x13)+4000*(x21+x22+x23)+3500*(x31+x32+x33)+3000*(x41+x42+x43);
约束条件包括以下4个方面:
(1)供装载的四种货物的总重量约束,即
x11+x12+x13<=20;
x21+x22+x23<=18;
x31+x32+x33<=35;
x41+x42+x43<=15;
(2)三个货舱的重量限制,即
x11+x21+x31+x41<=15;
x12+x22+x32+x42<=26;
x13+x23+x33+x43<=12;
(3)三个货舱的空间限制,即
480*x11+650*x21+600*x31+390*x41<=8000;
480*x12+650*x22+600*x32+390*x42<=9000;
480*x13+650*x23+600*x33+390*x43<=6000;
(4)三个货舱装入重量的平衡约束,即
(x11+x21+x31+x41)/15=(x12+x22+x32+x42)/26;
(x12+x22+x32+x42)/26=(x13+x23+x33+x43)/12;
模型求解
将以上模型输入LINGO求解,可以得到:
Optimal solution found at step: 10
Objective value: 155340.1
Variable Value Reduced Cost
X11 0.5055147 0.0000000
X12 6.562500 0.0000000
X13 2.286953 0.0000000
X21 11.93439 0.0000000
X22 0.0000000 2526.843
X23 6.065611 0.0000000
X31 0.0000000 0.4547474E-12
X32 0.0000000 1783.654
X33 1.599359 0.0000000
X41 0.0000000 1337.740
X42 15.00000 0.0000000
X43 0.0000000 1337.740
实际上,不妨将所得最优解四舍五入,结果为货物1装入前舱1吨、装入中舱7吨、装入后舱2吨;货物2装入前舱12吨、后舱6吨;货物3装入后舱2吨;货物4装入中舱15吨。最大利润为155340元。
三. 混合泳接力队的选拔
问题 某班准备从5名游泳队员中选择4人组成接力队,参加学校的4*100m混合泳接力比赛。5名队员4中用字的百米平均成绩如下表所示,问应如何让选拔队员组成接力队?
甲 乙 丙 丁 戊
蝶泳 1`06 57``2 1`18 1`10 1`07
仰泳 1`15 1`06 1`07 1`14 1`11
蛙泳 1`27 1`06 1`24 1`09 1`23
自由泳 58``6 53`` 59``4 57``2 1`02
问题分析 从5名队员中选出4人组成接力队,没人一种泳姿,且4人的用字各不相同,是接力队的成绩最好。容易想到的一个办法是穷举法,组成接力对的方案共有5!=120中,一一计算并作比较,即可找出最优方案。显然这不是解决这类问题的好办法,随着问题规模的变大,穷举法的计算量将是无法接受的。
可以用0-1变量表示以讴歌队员是非入选接力队,从而建立这个问题的0-1规划模型,借助县城的数学软件求解。
模型的建立与求解
设甲乙丙丁戊分别为队员i=1,2,3,4,5;即蝶泳、仰泳、蛙泳、自由泳分别为泳姿j=1,2,3,4.记队员i的第j中用字的百米最好成绩为Cij(s),既有
Cij I=1 I=2 I=3 I=4 I=5
J=1 66 57.2 78 70 67
J=2 75 66 67 74 71
J=3 87 66 84 69 83
J=4 58 53 59 57.2 62
引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij-=1,否则记Xij=0.根据组成接力队的要求,Xij应该满足两个约束条件:
第一, 没人最多只能入选4中用字之一,记对于i=1,2,3,4,5,应有∑Xij《=1;
第二, 每种泳姿必须有一人而且只能有1人入选,记对于甲,2,3,4,应有∑Xij=1;
当队员i入选泳姿j是,CijXij表示他的成绩,否则CijXij=0。于是接力队的成绩可表示为∑∑CijXij,这就是该题的目标函数。
将题目所给的数据带入这一模型,并输入LINGO:
min=66*x11+75*x12+87*x13+58.6*x14+57.2*x21+66*x22+66*x23+53*x24+78*x31+67*x32+84*x33+59.4*x34+70*x41+74*x42+69*x43+57.2*x44+67*x51+71*x52+83*x53+62*x54;
SUBJECT TO
x11+x12+x13+x14<=1;
x21+x22+x23+x24<=1;
x31+x32+x33+x34<=1;
x41+x42+x43+x44<=1;
x11+x21+x31+x41+x51=1;
x12+x22+x32+x42+x52=1;
x13+x23+x33+x43+X53=1;
x14+x24+x34+x44+X54=1;
@bin(X11);@bin(X12);@bin(X13);@bin(X14);@bin(X21);@bin(X22);@bin(X23);@bin(X24);@bin(X31);@bin(X32);@bin(X33);@bin(X34);@bin(X41);@bin(X42);@bin(X43);@bin(X44);@bin(X51);@bin(X52);@bin(X53);@bin(X54);
得到如下结果
Optimal solution found at step: 12
Objective value: 251.8000
Branch count: 0
Variable Value Reduced Cost
X11 0.0000000 66.00000
X12 0.0000000 75.00000
X13 0.0000000 87.00000
X14 1.000000 58.60000
X21 1.000000 57.20000
X22 0.0000000 66.00000
X23 0.0000000 66.00000
X24 0.0000000 53.00000
X31 0.0000000 78.00000
X32 1.000000 67.00000
X33 0.0000000 84.00000
X34 0.0000000 59.40000
X41 0.0000000 70.00000
X42 0.0000000 74.00000
X43 1.000000 69.00000
X44 0.0000000 57.20000
X51 0.0000000 67.00000
X52 0.0000000 71.00000
X53 0.0000000 83.00000
X54 0.0000000 62.00000
不要理他们~~~
我自己以前写过一篇类似的日志 你改一改拿去吧
一.绪论
昨日买甘蔗,发现一整根甘蔗四元,如果分段卖每段一元,分段方法是把一根甘蔗按长度等距离分四段。而由于不同部分的甘蔗粗细程度跟甜度不一样,造成了购买者的不公平,这与我们社会主义分配要重视公平与效率有极大矛盾,而且蔗头部分食用价值小,导致蔗头的那段往往卖不出去,这又减少了蔗农收入,甘蔗作为我国南方重要产物,既是广大蔗农唯一的可靠收入来源,又是重要的食品业原料,在农业生产中占有重要地位。曾说过,三农问题是我国的基础问题,其中促进农民增收又是基础中的基础,本文为贯彻十七大精神及讲话精神,为了保证广大蔗农的利益和社会主义分配的公平进行,对甘蔗进行分节的合理化做了初步的推算,推算的思路如下:
1.计算出甘蔗的总含糖量
2.按总含糖量把甘蔗平分作为甘蔗分节的初步依据
3.在2的基础上考虑吃甘蔗的成本(如更粗的甘蔗吃起来更累等),对甘蔗分节进行进一步合理化
二.理论模型
(一)甘蔗的总含糖量
1.截面积公式
设甘蔗的截面积与高度的函数关系为f(x),其中x为高度,由常理推断可知:f(x)为x的减函数,即:f’(x)<0,为方便期间,假设甘蔗截面积为圆形,截面圆半径与高度的函数关系为一次函数,即:r(x)=b-ax,(a,b为参数)则有:
f(x)=πr(x)?=π(b-ax)? (1)
2.甜度公式
设在高度x处,每单位体积甘蔗的含糖量为g(x),甘蔗的总含糖量为u,则在高度x处含糖总量du有:
du=g(x)dv (2)
而dv=f(x)*dx (3)
由(2)(3)式可知:
du=f(x)g(x)dx (4)
由生物学知识可知:
g(x)一般为指数式衰减,当高度达某一程度h时可近似认为含糖量为0,所以可设 :
得到:
由此,我们得到了甘蔗的甜度公式:
这个甜度公式反映了甜度与高度的函数关系,由式中可以看出甜度与高度呈明显的减函数关系。
3.总含糖量
下面我们开始计算甘蔗的总含糖量u,
经过计算得:
这就是长度为h的甘蔗的总含糖量
(二)把甘蔗进行分节
假设把甘蔗分为n段,则每一段含糖量为u/n。
则有:
则可以通过上式推导出每一个
由于要吃午饭,本文暂不推导,有兴趣的同学可以自行计算。
(三)考虑吃甘蔗的成本
假设吃甘蔗的痛苦程度与截面积的关系为线性关系,即
p(x)=m*g(x)
则吃甘蔗的享受程度q(x)=u(x)-p(x)
即:享受程度与甜度成正比,与痛苦程度成反比
由此得到
然后将(二)中u(x)替换为q(x),求出各个hi,然后hi-h(i-1)即为各段长度
三.结论及展望
从上述结论可以看出为保证广大蔗农的利益和消费者的公平,甘蔗的分段应遵循科学原则,合理分段。
未来的工作:由式中可以看出,本文计算还即为粗糙,下一步研究要利用统计学原理对甘蔗甜度及痛苦程度等进行精确测定模拟函数。
这个模型其实是计算底板正方形边长1.1M时,求小箱子的边长的最大整数值。
1.设小箱子边长为a*b,假设a>b,
设可摆放每边的长度可摆放边a的是n1,边长b的是n2(单对每边来说)
则取f(n1,n2)=min(1.1-n1*a-n2*b)>0,当f(n1,n2)越接近0时摆放地越紧密。
用1号箱来说,a=0.3 b=0.24,当取n1=2,n2=2时f(n1,n2)=1.1-1.08=0.02
同理2号箱为 n1=1? n2=2
3号箱为? n1=1 n2=4? 或n1=3,n2=1
2.可将f(n1,n2)-=min(1.1-n1*a-(n2-1)*b)>0? 每边多排列两个半个才不会掉。
即看做1.1+b的正方形
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。