当前位置:灰灰分享 > 慢生活 > 生活中的质量单位手抄报

生活中的质量单位手抄报

  • 发布:2024-07-17 08:29:27
  • 25次

质量月是指在国家质量工作主管部门的倡导和部署下,由全社会尤其是广大企业积极参与,旨在提高全民族质量意识的一年一度的专题活动。

生活中的质量单位手抄报

近年来,质量月活动正逐步形成自身的特点和发展趋势,质量月活动不需很大投入,却可产生推进质量振兴的社会效益。

一般质量月的主要活动有:召开主题大会、开展大规模咨询服务活动、组织宣讲《质量振兴纲要》、拍摄质量月主题公益电视广告、举办质量知识竞赛等等。

每年的9月份为质量月,是由国家质检总局、工信部等部门联合在全国范围内开展“质量月”活动,加强质量舆论宣传,优化质量发展环境。这个活动从18年就开始了,主要是为了提高全民的质量意识。

质量月是每年的几月

质量月的时候会在国家质量工作主管部门的倡导和部署下,布置一些全社会都会积极参加的专题活动,目的是为了提高全民族的质量意识。

18年的时候正值我国国民经济开始恢复的初期,许多企业生产效率低、质量问题严重。所以国家就提出了这个“质量月”用来提高全民生产的积极性。

质量月提出了“生产优质品光荣、生产劣质品可耻”的风尚,对企业的生产有着积极的作用。

质量的国际单位是千克,其它常用单位有吨、克、毫克、微克等,国外还有磅。一般用天平来称。同一物体的质量通常是一个常量,不因高度或纬度而改变。但根据爱因斯坦的相对论所阐述,同一物体的质量会随速度的变化而变化。

常见的质量的单位有:吨、千克、克、毫克、微克。 1吨=1000千克,1千克=1000克,1克=1000毫克,1毫克=1000微克。在国际单位制中,质量的单位是:千克。 另外还有农村或者集市上用的公斤、斤、两、钱,1公斤=2斤,1斤=10两,1两=10钱,国外还有磅。

质量是物理学中的基本量纲之一,符号m。在国际单位制中,质量的基本单位是千克(符号Kg)。实验室中天平是测质量的常用工具。质量不随物体的形状和空间位置而改变,是物质的基本属性之一,通常用m表示。在国际单位制中质量的单位是千克(kilogram)即Kg,这是保存在巴黎西南塞夫勒(sèvres)国际计量局标准千克原器的质量。该原器是一个用铂(90%)铱(10%)合金制成的圆柱体,其直径与高相等,以金属块的形式封存在玻璃罩中。

数学手抄报资料大全

1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在18年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。

高斯

印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

《自学成才的数学家》华罗庚小时候很有数学天份,但家庭遭变故,只得停学看店,靠自学成为了数学家……

高斯

印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

华罗庚一生都是在国难中挣扎。他常说他的一生中曾遭遇三大劫难。自先是在他童年时,家贫,失学,患重病,腿残废。第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。第三次劫难是“文化大革命”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的.

早在40年代,华罗庚已是世界数论界的领袖数学家之一。但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气!

华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在 SO年代,他就提出“天才在于积累,聪明在于勤奋”。 华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。 18年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。”

华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。”

人老了,精力要衰退,这是自然规律。华罗庚深知年龄是不饶人的。19年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。”生病就该听医生的话,好好休息。但他这种顽强的精神还是可贵的。

总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

尽管当时社会十分不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

在我国北宋时代,有一位博学多才、成就显著的科学家,他就是沈括(1031~1095)。

沈括,字存中,宋仁宗天圣九年(公元1031年)生于浙江钱塘(今浙江杭州市)一官僚家庭。他的父亲沈周(字望之)曾在泉州、开封、江宁做过地方官。母亲许氏,是一个有文化教养的妇女。

沈括自幼勤奋好读,在母亲的指导下,十四岁就读完了家中的藏书。后来他跟随父亲到过福建泉州、江苏润州(今镇江)、四川简州(今简阳)和京城开封等地,有机会接触社会,对当时人民的生活和生产情况有所了解,增长了不少见闻,也显示出了超人的才智。

沈括精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。

日本数学家三上义夫曾经说:沈括这样的人在全世界数学史上找不到,只有中国出了这么一个。英国著名科学史专家李约瑟博士称沈括的《梦溪笔谈》是中国科学史上的坐标。

高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。

有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。

第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。

就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。”

拉普拉斯反驳说:“陛下,我不需要这样一个设。”

当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的设,它说明了许多问题。”

两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他42949672是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。

人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。

至于科尔伯恩,他的天才渐渐消失了。

数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。

肯普**照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。

1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。

他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。

第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。

费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。

在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

数学手抄报资料

 数学手抄报资料大全:我们,为什么学数学?

 顾森:我们从小到大学数学,都是用现成的共识和定理解题。很多人学到毕业仍旧不知道公式、定理由哪些科学家提出。但事实上,背后的故事反而更精彩。包括很多数学上的结论,其实最开始,可能人们的猜想就是错误的,甚至得到了一个完全相反的结论,到后来才逐步逼近这个真理。这些都是课本上没有的。有很多书纯粹是讲故事,而《无言的宇宙》把很多数学公式的来历和对人类的影响都说出来,这一点很厉害。

 对人类的发展意义影响更大的我觉得是物理公式。数学公式其实也不是数学当中最有意义的东西,真正有意义的多数是定理,而不是由什么等于什么。

 李淼:我认为即便是文科生也需要跨界来学习。我非常支持高考改革不分文理。一千年前并没有什么分科。我们在人类科学的指导下,分工极度细化以后,科学发展到一定程度以后,一定要回到过去。就是要跨界,不跨界将来你的这个就业的机会和各方面,都会受到极大的限制。所以我非常期待在我有生之年看到,高考不再分科。

 顾森:如果说为了考试,那如取消数学考试,我们还会学吗?我认为数学应该分两个层次,一是小学100以内的加减乘除,学会算账。再往后的解方程,几何结论等等,生活当中可能一辈子也用不上。数学这个玩意儿学到初二就够了,再往上走,或许纯粹出于兴趣爱好。到一定专业的领域想要做一些全新的东西,为人类造福,数学物理才存在意义。

 数学手抄报资料大全:伟大数学公式的背后

 11年5月15日,尼加拉瓜发行了十张一套题为?改变世界面貌的十个数学公式?邮票,由一些著名数学家选出十个以世界发展极有影响的公式来表彰。这十个公式不但造福人类,而且具有典型的数学美,即:简明性、和谐性、奇异性。

 (一)手指计数基本法则

 邮票?1+1=2?是这套邮票的第一枚,这是人类一开始对数量认识的基础公式。人类的祖先就是以这一公式开始,堆石子,数贝壳、树枝、竹片,而后刻痕计数,结绳计数等,直至再后来创造文字、数字及计数用具如算盘、筹算、计算器等。一切都是从手指计数基本法则开始,因为人有十个手指,计算时以手指。毫无疑问,正是这一事实自然地孕育形成了现在我们熟悉的十进制系统。记数法与十进制的诞生是文明史上的一次飞跃。

 (二)勾股定理(毕达哥拉斯定理)

 若一直角三角形的直角边为A、B,斜边为C,则有A2+B2=C2,这就是欧氏几何中最为著名的勾股定理。它在数学与人类的实践活动中有着极其广泛的应用。在国外最早给出这一定理证明的是古希腊著名哲学家和数学家毕达哥拉斯,因而国外一般称之为?毕达哥拉斯定理?。

 中国在商高时代就已经知道?勾三股四弦五?的关系,远早于毕达哥拉斯,不过,中国对于勾股定理的证明却是比较迟的事情,一直到三国时期的赵爽才用面积割补法给出它的第一种证明。勾股定理的一大影响是无理数的发现。边长为1的正方形对角线长度为,不能用整数或整数之比即分数来表示,这一发现否定了毕氏学派?万物皆数?的信条,当时的人觉得整数与分数是容易理解的,称之为有理数,而新发现的这个数不好理解但却存在就取名为?无理数?。

 (三)阿基米德杠杆原理

 第三枚邮票表彰的数学公式F1X1=F2X2,其中F为作用力,X为力臂,FX即为力矩,从原则上说,只要动力臂足够长,而阻力臂足够短,就可以用足够小的力撬动足够重的物体。为此,阿基米德说了一句古名言:?给我一个支点,我就能撬动地球?。呵呵,看看物理学家多自信!!!除杠杆原理外,阿基米德还发现了著名的浮力定律和大量的几何学定理,他也是微积分的先驱之一。被后世数学家称尊为?数学之神?,在人类有史以来最重要的三位数学家中,阿基米德占首位,另两位分别是牛顿和高斯。

 (四)纳皮尔指数与对数关系公式

 对数关系公式即为纳皮尔公式,其中e=2.71828?。对数的发明者是苏格兰业余数学家纳皮尔男爵。自44岁起,经20年潜心研究大数的计算技术,他终于独立发明了对数,1614年出版了名著《奇妙的对数定律说明书》,对数表这一惊人发明很快传遍了欧洲大陆。伽利略发出了豪言壮语:?给我时间、空间和对数,我可以创造出一个宇宙来。?对数表曾在几个世纪内为数学家、会计师、航海家和科学家广泛应用。对数和指数已经成为数学的精髓部分,是每一个中学生必学的内容。

 (五)牛顿万有引力定律

 第五枚邮票立即使人联想到那个早已是家喻户晓的牛顿和苹果的故事。在那个神奇的期里,一个苹果偶然从树上掉下来,这却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,终于牛顿发现了对人类具有划时代意义的万有引力定律。

 其中G为引力常量,m1和m2分别表示两个物体的质量,r为两个物体的距离。

 (六)麦克斯韦电磁方程组

 第六个公式是麦克斯韦电磁方程组,该方程组确定了电荷、电流、电场和磁场之间的普遍联系,是电磁学的基本方程。麦克斯韦方程组表明,空间某处只要有变化的磁场就能激发出涡旋电场,而变化的电场又能激发涡旋磁场,交变的电场和磁场互相激发就形成连续不断的电磁振荡即电磁波。由此公式可以证明电磁波在真空中传播的速度等于光在真空中传播的速度,这不是偶然的巧合,而是由于光就是一定波长的电磁波,这便是麦克斯韦创立的光的电磁学说。麦克斯韦是继法拉第之后集电磁学大成的伟大物理学家。电磁学理论奠定了现代电力工业,电子工业和无线电工业的基础。1871年受聘为剑桥大学的实验物理教授,负责筹建该校的第一所物理学实验室?卡文迪许实验室。

 (七)爱因斯坦质能关系式

 E=mc2

 ,这里c为光速,m为质量,E为能量。这就是后来最著名的质能关系式。这可是制造的理论基础。1905年提出这个公式的人是年仅26岁的伯尔尼专利局小职员爱因斯坦。1915年,建立了广义相对论,确定了空间、时间和物质之间的联系,质能转换公式及相对论的影响是巨大的,今天核能广泛用于农业及军事,而黑洞、时间旅行、空间弯曲等都是由相对论推导出来。爱因斯坦6岁学习小提琴,一生与小提琴相伴,艺术提高了他的审美能力,他一辈子也追求物理中的数学美(简洁美与对称美)。

 (八)德布罗意公式

 第八枚邮票表彰的公式是1924年德布罗意提出的表达波粒二象性的德布罗意公式:?=h/mv,

 其中?为与粒子相伴的物质波的波长,h是普朗克常量,mv为粒子的动量。在德布罗意之前,人们对自然界的认识只局限于两种基本的物质类型:实物和场。德布罗意本来是学历史的,受数学家庞加莱的影响而改学科学。1924年他在博士论文中提出「物质波」的概念,轰动全世界,他认为任何实物、粒子都同时具有波与粒子二种性质,还运用爱因斯坦的相对论,导出物质波波长的公式。他的看法后来被戴维森的实验证实。而物质波的概念也为波动力学的发展提供了重要的理论基础。

 (九)玻尔兹曼公式

 1854年德国科学家克劳修斯首先引入熵的概念,这是对表示封闭体系杂乱程度的一个量,熵是希腊语?变化?的意思。这个量在可逆过程中不会变化,在不可逆过程中会变大。正像懒人的房间,若没有人替他收拾打扫,房间只会杂乱下去,决不会变得整齐。生物也离不开?熵增大法则?,生物需要从体外吸收负熵来抵消熵的增大。1877年,玻尔兹曼用下面的关系式来表示系统的无序性的大小:S=kLnW其中k为玻尔兹曼常数,s是宏观系统熵值,是分子运动或排列混乱程度的衡量尺度。W是可能的微观态数。W越大,系统就越混乱无序。由此可以看出熵的微观意义:熵是系统内分子热运动无序性的一种量度。由于观点新颖,一开始不为许多著名学者接受,玻尔兹曼为之付出了巨大的代价,成为他个人悲剧(自杀)的重要原因。玻尔兹曼的墓碑上刻的就是这个公式S=kLnW,以表彰他的伟大创见。

 (十)齐奥尔科夫斯基公式

 嫦娥奔月、万户飞天,人类对空间的向往由来已久,并为此进行着不懈努力。征服太空的关健是火箭技术。

 说到现代火箭,就要提到举世公认的宇航理论先驱者,前苏联的齐奥尔科夫斯基。正是他提出利用火箭进行星际航行和发射卫星的可能性。并建立了火箭结构特点与飞行速度之间的关系式,即著名的齐奥尔科夫斯基公式。其中V为火箭的速度增量,Ve为喷流相对于火箭的速度,m0和mi分别代表发动机开启和关闭时火箭的质量。它成为人类征服太空的钥匙。

 1957年苏联发射第一颗人造卫星,揭开太空时代的序幕,1961年送出第一位航天员─盖加林,赢了太空竞赛的第一役,美国在1969年送阿姆斯特朗踏上月球。齐奥尔科夫斯基他着重钻研中国古代火箭技术,请人翻译明末及清初的军事著作参考,尤其对《武备志》最感兴趣。当时中国已拥有近三十种军用火箭,?神机火龙箭?或?火龙出水?之类的武器令他着迷,他产生了更多的梦想和灵感,不久写成《地球与天空的梦想》一书。他有一句十分精辟的名言:?地球是人类的摇篮,但是人不能永远生活在摇篮里。?

 数学手抄报资料大全:数学名言

 1、数学是科学的女王,而数论是数学的女王。?高斯

 2、一个国家的科学水平能够用它消耗的数学来度量?拉奥

 3、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。?史密斯

 4、读读欧拉,读读欧拉,他是咱们大家的老师。?拉普拉斯

 5、有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是咱们继续研究的动力,并且最能使咱们有所发现。?高斯

 6、一门科学,只有当它成功地运用数学时,才能到达真正完善的地步。?马克思

 7、我决心放下那个仅仅是抽象的几何。这就是说,不再去思考那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何笛卡儿

 8、一个没有几分诗人才能的数学家决不会成为一个完全的数学家魏尔斯特拉斯

 9、纯数学这门科学再其现代发展阶段,能够说是人类精神之最具独创性的创造。?怀德海

 10、咱们能够期盼,随着教育与的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。?贝尔斯

 11、"问题是数学的心脏。?PRHalmos

 12、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。?A?N?怀德海

 13、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示独立发展的终止或衰亡。?希尔伯特

 14、纯数学这门科学再其现代发展阶段,能够说是人类精神之最具独创性的创造。?怀德海

 15、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。?华罗庚

 16、一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。?库默

 17、数学?科学不可动摇的基石,促进人类事业进步的丰富源泉巴罗

 18、虽然不允许咱们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:必须的虚构设足以解释许多现象。?欧拉出处

 19、问题是数学的心脏。?PRHalmos

 20、没有任何问题能够向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。?希尔伯特

 21、到底是大师的著作,不一样凡响!?伽罗瓦

 22、咱们欣赏数学,咱们需要数学。?陈省身

 23、数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。?陈省身

 24、数学家实际上是一个著迷者,不迷就没有数学诺瓦利斯

 25、数学不可比拟的永久性和万能性及他对时刻和文化背景的独立行是其本质的直接后果。?A?埃博

 27、在数学的天地里,重要的不是咱们知道什么,而是咱们怎样知道什么?毕达哥拉斯

 28、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。?GD伯克霍夫(伤感网名)

 29、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要?康扥尔

 30、算术是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。

 数学手抄报资料大全:1-6年级的公式

 1、每份数?份数=总数

 总数?每份数=份数

 总数?份数=每份数

 2、1倍数?倍数=几倍数

 几倍数?1倍数=倍数

 几倍数?倍数=1倍数

 3、速度?时间=路程

 路程?速度=时间

 路程?时间=速度

 4、单价?数量=总价

 总价?单价=数量

 总价?数量=单价

 5、工作效率?工作时间=工作总量

 工作总量?工作效率=工作时间

 工作总量?工作时间=工作效率

 6 、加数+加数=和

 和-一个加数=另一个加数

 7 、被减数-减数=差

 被减数-差=减数

 差+减数=被减数

 8 、因数?因数=积

 积?一个因数=另一个因数

 9、 被除数?除数=商

 被除数?商=除数

 商?除数=被除数

 小学数学图形计算公式

 1、正方形

 C周长 S面积 a边长

 周长=边长?4

 C=4a

 面积=边长?边长

 S=a?a

 2、正方体

 V:体积 a:棱长

 表面积=棱长?棱长?6

 S表=a?a?6

 体积=棱长?棱长?棱长

 V=a?a?a

 3、长方形

 C周长 S面积 a边长

 周长=(长+宽)?2

 C=2(a+b)

 面积=长?宽

 S=ab

 4 、长方体

 V:体积 s:面积 a:长 b: 宽 h:高

 (1)表面积=(长?宽+长?高+宽?高)?2

 S=2(ab+ah+bh)

 (2)体积=长?宽?高

 V=abh

 5 、三角形

 s面积 a底 h高

 面积=底?高?2

 s=ah?2

 三角形高=面积2?底

 三角形底=面积2?高

 6、平行四边形

 s面积 a底 h高

 面积=底?高

 s=ah

 7、梯形

 s面积 a上底 b下底 h高

 面积=(上底+下底)?高?2

 s=(a+b)? h?2

 8 圆形

 S面积 C周长 d=直径 r=半径

 (1)周长=直径?=2半径

 C=?d=2?r

 (2)面积=半径?半径?

 9、圆柱体

 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

 (1)侧面积=底面周长?高

 (2)表面积=侧面积+底面积?2

 (3)体积=底面积?高

 (4)体积=侧面积?2?半径

 10、圆锥体

 v:体积 h:高 s;底面积 r:底面半径

 体积=底面积?高?3

 和差问题的公式;

 总数?总份数=平均数

 (和+差)?2=大数

 (和-差)?2=小数

 和倍问题

 和?(倍数-1)=小数

 小数?倍数=大数

 (或者 和-小数=大数)

 差倍问题

 差?(倍数-1)=小数

 小数?倍数=大数

 (或 小数+差=大数)

 植树问题 :

 1、非封闭线路上的植树问题主要可分为以下三种情形:

 ⑴如果在非封闭线路的两端都要植树,那么:

 株数=段数+1=全长?株距-1

 全长=株距?(株数-1)

 株距=全长?(株数-1)

 ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

 株数=段数=全长?株距

 全长=株距?株数

 株距=全长?株数

 ⑶如果在非封闭线路的两端都不要植树,那么:

 株数=段数-1=全长?株距-1

 全长=株距?(株数+1)

 株距=全长?(株数+1)

 2 、封闭线路上的植树问题的数量关系如下

 株数=段数=全长?株距

 全长=株距?株数

 株距=全长?株数

 盈亏问题 :

 (盈+亏)?两次分配量之差=参加分配的份数

 (大盈-小盈)?两次分配量之差=参加分配的份数

 (大亏-小亏)?两次分配量之差=参加分配的份数

 相遇问题 :

 相遇路程=速度和?相遇时间

 相遇时间=相遇路程?速度和

 速度和=相遇路程?相遇时间

 追及问题 :

 追及距离=速度差?追及时间

 追及时间=追及距离?速度差

 速度差=追及距离?追及时间

 流水问题 :

 顺流速度=静水速度+水流速度

 逆流速度=静水速度-水流速度

 静水速度=(顺流速度+逆流速度)?2

 水流速度=(顺流速度-逆流速度)?2

 浓度问题 :

 溶质的重量+溶剂的重量=溶液的重量

 溶质的重量?溶液的重量?100%=浓度

 溶液的重量?浓度=溶质的重量

 溶质的重量?浓度=溶液的重量

 利润与折扣问题:

 利润=售出价-成本

 利润率=利润?成本?100%=(售出价?成本-1)?100%

 涨跌金额=本金?涨跌百分比

 折扣=实际售价?原售价?100%(折扣<1)

 利息=本金?利率?时间

二年级数学课外小知识手抄报

33 靡靡之音

0000 万无一失

7分+8分=1000元 一刻千金

9寸 得寸进尺

10002=100×100×100 千方百计

1000×10 千变万化

15分=100元 一克千金

1、2、4、3、5 颠三倒四

3333355555 三五成群

999:999 不相上下 1.地铁车厢并排坐着5个女孩,A坐在离B和离C正好相同距离的位置上,D坐在离A和离C正好相同距离的作为上,E坐在她的亲友之间。谁是E的亲友? 答案:E坐在A和B之间,A、B是她的亲友。2.某要塞有步兵692人,每4人站一横排,各排相距1米向前行走1每分钟走86米。现在要通过长86米的桥,请问第一排上桥到最后一排离桥需要几分钟? 答案:3分钟。 3.一位农民养了9只羊、7口猪、5头牛。论价格,2只羊可换一口猪,5只羊可换1头牛。他要把这些牛、羊、猪分给3个儿子,不但没人分得的家畜头数要相同,而且价值也要相等。你能想出一个分配方案吗? 答案:大儿子分1头牛、5口猪、1只羊;二儿子分2头牛、1口猪、4只羊;三儿子分2头牛、1口猪、4只羊。 4.两辆车相距1500米。设前面的车以90km/h的速度前进,后面的车以 144km/h的速度追赶,那么两辆车在相撞钱一秒钟相距多远? 答案:相距15米。 5.有甲、乙两个公司招聘经理。甲公司年薪10万元,没年提薪一次,每次加薪2万元;乙公司半年薪金5万元,每半年提薪一次,每次加薪5千元。问去哪个公司挣得的薪水更多? 答案:去乙公司挣得的薪水更多。6.俄国著名数学家罗蒙诺索夫向邻居借《数学原理》一书,邻居对他说:“你帮我劈10天柴,我就把书送给你,另给你20个卢布.”结果他只劈了7天柴。邻居把书送给他后,另外付了5个卢布。《数学原理》这本书的价格是多少卢布?答案:书的价格是30卢布 。7.瓶中装有浓度15%的酒精1000克,现分别将100克400克的a、b两种酒精倒入瓶中,则瓶中酒精的浓度变为14%,已知a种酒精的浓度是b种酒精的2倍,求a种酒精的浓度?答案:20% 数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

13年2月,从““浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。13年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。19年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。 .请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。

2.

三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。 3.光子火箭的飞行目的地为系中心,已知系中心离地球的距离为R=3.4*10^4光年,火箭在前一半旅程以加速度a'=10m/s^2(相对火箭的静止系)作匀加速运动,而后一半的旅程则以同样的加速度作减速运动,火箭到达目的地时的静止质量M'(静止)=1.0*10^6kg,试问:火箭发动机在开始发射时至少需要多大功率 三个人住店,总共房费是30元,每人交房费10元.

旅店打折,老板返还5元.

伙计给每个房客返还1元,伙计自己昧了2元.

实际上每个房客交了9元,三九27,再加上伙计昧下的2元,总共是29元,请问其余的1元钱去哪

手抄报“数学知识报”中的内容

1. 二年级数学课外小知识

二年级数学课外小知识 1.小学二年级上册数学有哪些知识点

摘要:1.加数+加数=和 因数*因数=积 和—加数=加数 积÷因数=因数

1.加数+加数=和 因数*因数=积

和—加数=加数 积÷因数=因数

被减数—减数=差 被除数÷除数=商

被减数—差=减数 被除数÷商=除数

减数+差=被减数 除数*商=被除数

2.除数>;余数 除数*商+余数=被除数 除数*商=被除数-余数

3.从一点引出两条射线所组成的图形叫作角。

角有一个顶点,两条直边。

一把三角尺有三个角,其中一个是直角。

4.正方体和长方体的特征

共同点:正方体和长方体都有6个面,12条棱和8个顶点。

不同点:(面)正方体的6个面都是正方形。

长方体有6个面都是长方形,也可能相对的两个面是正方形。

正方体的12条棱都相等。

长方体的12条棱不都相等,长方体的12条棱可以分成3组,每组4条棱长度相等,也可以分成2组,一组4条棱长度相等,另一组8条棱长度相等。

关系:正方体是特殊的长方体。

5.至少用8个小正方体才可以拼成一个大正方体。

6.正方形和长方形的特征

共同点:正方形和长方形都有4条边,4个直角,对边相等。

不同点:(边)正方形的4条边相等,也可以说邻边相等。

长方形的对边相等。

关系:正方形是特殊的长方形。

7.至少用4个小正方形才可以拼成一个大正方形。

8.一个平方数的4倍还是一个平方数。

从1开始的连续的奇数的和是一个平方数。

9.一个因数乘几,另一个因数除以几,积不变。

10.任何数与10相乘,只要在这个数的末尾添1个0。

11.任何数与0相乘,积都得0。

0除以任何数不等于0的数,商都是0,所以0不能作除数。

2.小学数学的知识点总结

常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 )表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。

2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

3.数学课外小知识

数学知识《几何原本》几 何原本《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响.自它问世之日起,在长达二千多年的时间里一直盛行不衰.它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本.除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比.但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的. 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料.希腊学者们开始对当时的数学知识作有的整理,并试图将其组成一个严密的知识系统.首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充.到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础.欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明.他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》.《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的.《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识.第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理.该卷的最后两个命题是毕达哥拉斯定理及其逆定理.这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的.”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了. 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学.第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理.这些定理大多都能在现在的中学数学课本中找到.第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题.第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一.据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容.他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来.此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐.第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理.第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷.最后三卷,即第十一、十二和十三卷,论述立体几何.目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到.《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系.所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题.《几何原本》成为了两千多年来运用公理化方法的一个绝好典范.诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值.它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语.它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝.哥德巴赫猜想 哥 德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等.第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等.这就是著名的哥德巴赫猜想.它是数论中的一个著名问题,常被称为数学上的明珠. 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和.1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题.但是第一个问题至今仍未解决.由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”.1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数.1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。

4.有什么适合二年级小朋友看的数学课外读物,是二年级哦

“从小爱数学”这套书很不错,我儿子二年级,正在看,非常喜欢。下面是当当网对这套书的介绍:

“从小爱数学”绘本曾经荣获第5届韩国出版文化大奖。是韩国儿童数学启蒙的必备用书,同时还是韩国许多小学的数学教材的读物。适合4~10岁儿童阅读。它与目前出版的数学启蒙书相比,是最全面、最系统的、数学知识点涵盖面最广的一套书,而且有科学的排序,让家长有径可循。但是该丛书在讲述数学知识的过程中又很生动活泼,故事十分有趣,让孩子们轻轻松松爱上数学!/productx?product_id=21066742

5.课外数学小知识

一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。

第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。

它是数论中的一个著名问题,常被称为数学上的明珠。二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。

国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。

陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。

但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。

根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。

三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。

6.课外数学小知识

一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学上的明珠。

二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。

三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。

7.二年级数学学习内容有哪些

从课前、上课、作业、阅读等几个方面对二年级学生提出应重点培养的学习习惯方面的内容。

1、课前:

学生须将数学课本、课堂练习册、演草本、学习用具等准备好并摆放在课桌上;在老师指导下,合理组建学习小组,并复习与本节课有关的旧知识。

2、上课:

学会倾听别人的发言,边听边想,分清重点、非重点;以一定速度默读,边读边思考;积极回答老师提出的问题,回答问题要完整,学会完整地口述解题思路;能独立思考问题,思考时有条理、有根据,敢于质疑问难;能用较准确的数学语言回答问题。小组内学会发挥集体智慧,理顺总结探究过程,小组之间互提建议,在交流中互相学习。

3、作业:

先复习再作业,看清楚题目要求,弄懂题意;作业整洁,书写工整、规范、美观;按时独立完成作业,无抄袭现象;做作业要专心,不边做边玩;能按要求进行检验,掌握验算的一般方法,中高年级做到自觉验算,能根据实际情况灵活合理地进行验算。

4、阅读:

阅读有详有略,有重点、非重点之分;根据自己的兴趣有选择地阅读自己喜欢的数学课外读物。养成自觉阅读教科书和课外读物的习惯;阅读后同学之间能互相交流,有自己的独到见解,喜欢钻研数学问题。

在实施中,每位数学老师根据本班的实际情况将学生分为上、中、下三类,按照三个层次对他们分别提出不同的要求,使每一个学生的数学学习习惯都得到不同程度的提高。尤其对于后进生,教师要针对其不良的习惯,如,计算不仔细,读题不认真,上课不听讲等做耐心细致的工作,多接触、多辅导、多鼓励他们,从改变不良的习惯入手,以养成良好的习惯为突破口,促进其学习方式的转变和学习成绩的提高。

现从下面几方面对二年级学生数学阅读提出具体的要求:

二年级:

①会看懂课文中的注解、法则、结语,并能用准确的数学术语正确表达计算方法、解题思路。

②在阅读过程中初步体验自己提出问题、自己分析问题、自己解决问题的过程。

③初步养成在阅读课本后试做课后习题的习惯。

④在课堂上初步学会带着问题阅读课文,并学着针对自学提纲展开对例题的讨论。

⑤初步学会默读课文。

⑥初步培养克服学习中困难的意志。

8.二年级的数学知识

二年上数学知识点整理 一、乘除法 1、加法与乘法的互换: 一道加法算式可以改写成两道乘法算式,因为交换两个乘数的位置积不变。

如:5+5+5+5=5X4=4X5(这里有一些特殊情况如:3+3+3=3X3这样的加法只能写出一道乘法算式) 一道乘法算式可以改写成两道加法算式,因为一道乘法算式有两种含义。 如:4X6=4+4+4+4+4+4(表示6个4相加) =6+6+6+6 (表示4个6相加) (这里也有一些特殊情况,如:5X5=5+5+5+5+5 这样的乘法算式只能写出一道加法算式。)

2、乘除法各部分名称 5 X 6 = 30 乘数 乘号 乘数 等号 积 30 ÷ 5 = 6 被除数 除号 除数 等号 商 被除数=商*除数 在有余数的除法算式中:被除数=商*除数+余数 积÷一个乘数=另一个乘数 3、乘除法含义 3*2=6 2个3相加的和是6。 3的2倍是6。

3个2相加的和是6。 2的3倍是6。

6÷2=3 把6平均分成2份,每份是3。 6里面有2个3。

6是3的2倍。 把6每2个一份,可以分成3份。

6里面有3个2。 6是2的3倍。

4、乘法口诀:根据一句口诀写出两道乘法算式和两道除法算式。 三四十二 4*3=12 表示3个4相加 3*4=12 表示4个3相加 12÷4=3 表示把12平均分成4分,每份是3. 12÷3=4 也就是12里面有4个3. 表示把12每4个一份,分成了3分 也就是12里面有3个4 乘除法算式的含义要根据题中所给的图形表述,不能死记硬背。

5、乘除法应用题:能正确解答乘除法应用题:把几个相同部分和在一起求总数的时候用乘法计算。把一个整体平均分成若干相等的小份就用除法计算。

6、乘除法算式互换:能进行乘法算式和除法算式的相互改写。在改写的过程中,乘法算式中的积做除法算式中的被除数,而乘法算式中的乘数则做除法算式中的除数和商。

30÷5=6 5*6=30 6*5=30 4*6=24 24÷4=6 24÷6=4 7、倍数问题:先找到关键的句子“ 是 的 倍”。是前边的是大数,是后边的是小数。

也就是大数是小数的 倍。如果求大数就用乘法,求小数就用除法,求倍数也用除法。

(1)“求一个数是另一个数的几倍”用除法计算。 红球有8个,白球有2个,红球的个数是白球的几倍?8÷2=4 (2)“求一个数的几倍是多少”用乘法计算。

红球有8个,白球的个数是红球的2倍。白球有多少个?8*2=16(个) (3)“已知一个数的几倍是多少,求这个数”用除法计算。

红球有8个,是白球个数的2倍。白球有多少个?8÷2=4(个) 8、有余数除法:平均分后有剩余的时候就用有余数的除法算式表示。

34÷5=6……4 读作34除以5等于6余4.其中4叫余数。在有余数的除法算式中,余数一定要比除数小,但是余数不一定比商小。

如:99÷10=9……9 10÷6=1……4 被除数=商*除数+余数 除数=(被除数—余数)÷商 二、观察物体 站在一个角度,最多能看到物体的三个面。(正面、上面、侧面) 侧面分左侧和右侧,在生活中左右两侧看到的物体是不同的。

一个正方体从正面、侧面和上面看到的都是正方形。 能正确画出不同方位看到的平面图形。

三、方向与位置 1、生活中的方向 早晨太阳升起的方向是东,按照顺时针方向依次是东南西北。(要求学生能在生活中找到这四个方向) 当你面向东时,你的后面是西,左面是北右面是南。

当你面向西时,你的后面是东,左面是南右面是北。 当你面向北时,你的后面是南,左面是西右面是东。

当你面向南时,你的后面是北,左面是东右面是西。 2、图纸中的方向:一般图纸都是按照上北下南左西右东绘制的。

在图纸上会有一个向上的箭头标明北。在回答问题前先在图纸上下左右四个方位标上北南西东四个字,然后再回答题中的问题。

如果图纸中出现了其他方向的箭头,请先找到北,并把北面转向上,然后再按照上北下南左西右东的方法找到其他方向,然后再回答问题。 四、时、分、秒 1、钟面上的知识 钟面上有12个数字,12个大格,60个小格。

钟面上时针走1大格是1时。 分针走1小格是1分,分针走1大格是5分。

秒针走1小格是1秒,走1大格是5秒。 时针走1大格分针走1圈,1时=60分。

分针走1小格秒针走1圈,1分=60秒 在1天当中,时针转2圈,分针转24圈。 2、我们学习过的计量单位有: 时间单位:1时=60分 1分=60秒 1日=24时 半小时=30分 1刻钟=15分 1星期=7天 长度单位:1m=100cm 人民币单位:1元=10角 1角=10分 1元=100分 高级单位 低级单位 时 分 秒 M cm 元 角 分 3、单位名称的转换: 单名数 单名数:把高级单位转换成低级单位*进率 把低级单位转化成高级单位÷进率 3m=( )cm 想:1m=100cm 3m就是3个100cm, 100*3=300 所以3m=300cm 50角=( )元 想:10角=1元 50÷10=5,50角里有5个10角,所以50角=5元 单名数 复名数:单名数÷进率=高级单位……低级单位 130分=( )时( )分 想:60分=1时 130÷60=2……10 所以130分=1时10分 205cm=( )m( )cm 想:100cm=1m 205÷100=2……5 所以205cm=2m5cm 65分=( )角( )分 想:10分=1角 65÷10=6……5 所以65分=6角5分 复名数 单名数:高级单位*进率+低级单位 3时55分=( )分 想:1时=60分 3*60+55=235 所以3时55分=235分 2m9cm=( )cm 想:1m=100cm 2*100+9=209 所以2m9cm=209cm 3元4角=( )角 想:1元=10角 3*10+4=34 所以3。

发现生活中的应用,

怎样进行手抄报的设计与制作,大体上可以从这三个方面来阐述:

一、美化与设计的步骤;

二、报头、插图与尾花的表现;

三、编辑抄写描绘制作过程。

一、美化与设计

手抄报的美化与设计涉及的范围主要有:版面设计与报头、题花、<WBR>插图、尾花和花边设计等。

1、版面设计

版面设计是出好手抄报的重要环节。

要设计好版面,须注意以下几点:

(1)明确本期手抄报的主要内容是什么,选用有一定意义的报头(<WBR>即报名)。一般报头应设计在最醒目的位置;

(2)通读所编辑或撰写的文章并计算其字数,<WBR>根据文章内容及篇幅的长短进行编辑(即排版)。<WBR>一般重要文章放在显要位置(即头版);

(3)要注意长短文章穿插和横排竖排相结合,<WBR>使版面既工整又生动活泼;

(4)排版还须注意:字的排列以横为主以竖为辅,<WBR>行距要大于字距,篇与篇之间要有空隙,篇与边之间要有空隙,<WBR>且与纸的四周要有3CM左右的空边。另外,报面始终要保持干净、<WBR>整洁。

2、报头

报头起着开门见山的作用,必须紧密配合主题内容,<WBR>形象生动地反映手抄报的主要思想。报名要取得有积极、健康、<WBR>富有意义的名字。

报头一般由主题图形,报头文字和几何形体色块或花边而定,<WBR>或严肃或活泼、或方形或圆形、或素雅或重彩。

报头设计应注意:

(1)构图要稳定,画面结构要紧凑,<WBR>报头在设计与表现手法上力求简炼,要反映手抄报的主题,起“<WBR>一目了然”之效;

(2)其字要大,字体或行或楷,或彩色或黑白;

(3)其位置有几种设计方案:一是排版设计为两个版面的,<WBR>应放在右上部;二是排版设计为整版的,则可或正中或左上或右上。<WBR>一般均设计在版面的上部,不宜放在其下端。

3、题头

题头(即题花)一般在文章前端或与文章题图结合在一起。<WBR>设计题头要注意以题目文字为主,字略大。<WBR>装饰图形须根据文章内容及版面的需要而定。<WBR>文章标题字要书写得小于报题的文字,要大于正文的文字。总之,<WBR>要注意主次分明。

4、插图与尾花

插图是根据内容及版面装饰的需要进行设计,<WBR>好的插图既可以美化版面又可以帮助读者理解文章内容。<WBR>插图及尾花占的位置不宜太大,易显得空且乱。<WBR>尾花大都是出于版面美化的需要而设计的,<WBR>多以花草或几何形图案为主。<WBR>插图和尾花并不是所有的文章都需要的,并非多多益善,应得“<WBR>画龙点睛”之效。

5、花边

花边是手抄报中不可少的。有的报头、题头设计可用花边;<WBR>重要文章用花边作外框;文章之间也可用花边分隔;<WBR>有的整个版面上下或左右也可用花边隔开。<WBR>在花边的运用中常用的多是直线或波状线等。

二、报头画、插图与尾花的表现手法

报头画、<WBR>插图与尾花的表现手法大致可分为线描画法和色块画法两种。

1、线描画法

要求形象简炼、概括,用线准确,主次分明。<WBR>作画时要注意一定的步骤:

(1)一般扼要画出主线----确定角度、方向和大小;

(2)再画出与图相关的比例、结构及;

(3)刻画细部,结合形体结构、构图、色调画出线条的节奏变化;

(4)最后进行整理,使画面完整统一。

2、色块画法

除要求造型准确外,还须善于处理色块的搭配和变化关系,<WBR>而这些关系的处理要从对象的需要出发,使版面色彩丰富。作画时,<WBR>可先画铅笔稿(力求造型准确),再均匀平涂大色块;后刻画细部;<WBR>最后进行修整,使之更加统一完美。

线描画法与色块画法,通常是同时使用,可以是多色亦可单色。<WBR>不管是线描还是色块画法,最好不要只用铅笔去画。<WBR>版面上的图形或文字不能剪贴。

三、手抄报的编绘制作的步骤

编绘制作是落实由设想到具体着手完成的重要步骤。

其步骤有二:一是准备阶段,另一是编制阶段。

1、准备阶段。

主要是各种材料、工具的准备。具体包括:拟定本期手抄报的报名;<WBR>准备好一张白棒纸(大小视需要而定,有半开,四开,八开等,<WBR>本次政教处举办的手抄报比赛是要求为《江西日报》大小,即半开)<WBR>;编辑、撰写有关的文字材料(文章宜多准备些);书写、<WBR>绘图工具等。

2、编制阶段。

这个阶段是手抄报制作的主要过程。 大致为:版面设计、抄写过程、美化过程。

(1)版面设计:根据文章的长短进行排版,并画好格子或格线(<WBR>一般用铅笔轻轻描出,手抄报制作完毕后可擦可不擦)。

(2)抄写过程:指的是文章的书写。手抄报的用纸多半是白色,<WBR>故文字的书写宜用碳素墨水;字体宜用行书和楷书,<WBR>少用草书和篆书;字的个头大小要适中(符合通常的阅读习惯)。<WBR>字写得不是很漂亮不要怕,关键在于书写一定要工整。另外,<WBR>文章或标题中不能出现错别字。

(3)美化过程:文章抄写完毕后,即可进行插图、尾花、<WBR>花边的绘制(不宜先插图后抄写),将整个版面美化。<WBR>这个过程是手抄报版面出效果的关键过程。

手抄报可以是黑白的,也可是彩色的。可以是综合性的,<WBR>也可以专题性的。<WBR>手抄报的制作设计与黑板报制作设计要求和步骤大体是相同的。

高中数学手抄报

自行车的轮子、方向盘、圆规、电风扇中心、沙井盖。。。仔细用心去发现生活中好多东西都是圆形的 .

蒙古包为天穹式,呈圆形,木架外边用白羊毛毡覆盖。因为它是圆形的,所以立在草原上,大风雪中阻力小,再大的地震中也不会变形,顶上又不积雨雪,寒气不易侵入,是非常安全的住所。

因为园耗材少,而且它是圆形的,立在草原上,大风雪中阻力小,再大的地震中也不会变形,顶上又不积雨雪,寒气不易侵入,是非常安全的住所。

要选我哦~~~~~~~~~~~

世界上所有的生物为了生存,总是朝着对环境最有适应性的方面发展的,植物也是如此,植物的茎呈圆柱形(圆锥形)也是自身生长繁衍的需要。

几何角度去理解,周长相同时,圆的面积比其他任何形状都要大。相对所需的构建原料较少。因此圆形树干、树枝、植物茎中导管和筛管的分布数量要比其他形状的多的多,这样,圆形植物茎输送水分和养料的能力就要大,更有利于植物的生长。另外圆柱形的体积也比其他柱形的体积大,它具有很大的支撑力,当树枝上挂满果实时,它能强有力地支撑着树冠,使树干不至于弯曲。

植物茎的横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,植物茎各处的弯曲程度相似,不管风力来自哪个方向,植物茎承受的阻力大小相似,植物茎不易受到破坏。

还有,植物的茎比较柔软,可以随风摇动,不容易折断。

这样可以么?

数学手抄报

数学小报的内容

这里有些素材 你整理一下就行了第一部分:数学小故事1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)

后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年。

家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。

老师们对他的评价是“只宜在数学的尖端领域里工作”。 3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。

父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。

在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 第二部分:生活中的数学学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。

比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。

从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。

我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。

我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。

这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。

希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。第三部分:数学小笑话《不是洗澡堂》 德国女数学家爱米·诺德,虽已获得博士学位,但无开课“资格”,因为她需要另写论文后,教授才会讨论是否授予她讲师资格。

当时,著名数学家希尔伯特十分欣赏爱米的才能,他到处奔走,要求批准她为哥廷根大学的第一名女讲师,但在教授会上还是出现了争论。 一位教授激动地说:“怎么能让女人当讲师呢?如果让她当讲师,以后她就要成为教授,甚至进大学评议会。

难道能允许一个女人进入大学最高学术机构吗?” 另一位教授说:“当我们的战士从战场回到课堂,发现自己拜倒在女人脚下读书,会作何感想呢?” 希尔伯特站起来,坚定地批驳道:“先生们,候选人的性别绝不应成为反对她当讲师的理由。大学评议会毕竟不是洗澡堂!” 第四部分趣味数学 1 我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?答案:日租金360元。虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。

而客满时净利润只有160*80-40*80=9600元。当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

2《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。

原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?原书的解法是;设头数是a,足数是b。

则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。

原书在解这个问题时,很可能是用了方程的方法。设x为雉数,y为兔数,则有x+y=b, 2x+4y=a解之得y=b/2-a,x=a-(b/2-a)根据这组公式很容易得出原题的答案:兔12只,雉22只。

数学手抄报资料

中国数学界的伯乐——熊庆来 人们在赞美千里马时,总会记起识马的伯乐。

中国科学界在赞美华罗庚时,也不会忘记他的老师、中国近代数学的先驱——熊庆来。 熊庆来(1893—1969),字迪之,云南弥勒人,18岁考入云南省高等学堂,20岁赴比利时学矿,后到法国留学,并获博士学位。

他主要从事函数论方面的研究,定义了一个“无穷级函数”,国际上称为熊氏无穷数。 熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。

1930年,他在清华大学当数学系主任时,从学术杂志上发现了华罗庚的名字,了解到华罗庚的自学经历和数学才华以后,毅然打破常规,请只有初中文化程度的19岁的华罗庚到清华大学。在熊庆来的培养下,华罗庚后来成为著名的数学家。

我国许多著名的科学家都是他的学生。在70多岁高龄时,他虽已半身不遂,还抱病指导两个研究生,这就是青年数学家杨乐和张广厚。

熊庆来爱惜和培养人才的高尚品格,深受人们的赞扬和敬佩。早在1921年,他在东南大学(南京大学前身)当教授时,发现一个叫刘光的学生很有才华,经常指点他读书、研究。

后来又和一位教过刘光的教授,共同资助家境贫寒的刘光出国深造,并且按时给他寄生活费。有一次,熊庆来甚至卖掉自己身上穿的皮袍子,给刘光寄钱。

刘光成为著名的物理学家后,经常满怀深情地提起这段往事,他说:“教授为我卖皮袍子的事,十年之后才听到,当时,我感动得热泪盈眶。这件事对我是刻骨铭心的,永生不能忘怀。

他对我们这一代多么关心,付了多么巨大的热情和挚爱呀!” 数学之父—塞乐斯 (Thales) 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。

他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。

在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。

如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。

塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。

它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。

塞乐斯最先证明了如下的定理: 1.圆被任一直径二等分。 2.等腰三角形的两底角相等。

3.两条直线相交,对顶角相等。 4.半圆的内接三角形,一定是直角三角形。

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。

相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。

数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。

" 成语:朝三暮四 故事: 据说,这是记载在“庄子”里面的一则寓言故事。宋朝有一个人在他家养了一大批的猴子,大家都叫他狙公。

狙公懂得猴子的心理,猴子也了解他的话,因此,他更加的疼爱这些能通人语的小动物,经常缩减家中的口粮,来满足猴子的食欲。有一年,村子里闹了饥荒,狙公不得不缩减猴子的食粮,但他怕猴子们不高兴,就先和猴子们商量,他说:“从明天开始,我每天早上给你们三颗果子,晚上再给你们四颗,好吗?”猴子们听说他们的食粮减少,都咧嘴露牙的站了起来,表现出非常生气的样子。

狙公看了,马上就改口。

高中数学手抄报

我有一个是有关数学的故事。以前有个老汉,他有三个儿子。有一天,他快死了,于是就立下遗嘱,三个儿子一起分他的财产——17头牛。他有不想他的儿子这么轻易的得到遗产,所以要考考她们。于是要求大儿子得到1/2,二儿子得到1/3,小儿子得到1/9,而且不能分把牛杀了。三个儿子怎么也想不出办法来。后来遇到一个秀才,才把问题解决了。

答案就是,向村里人借来一头牛,于是,大儿子得到18的一半,就是9只,二儿子得到6只,三儿子得到2只,总共17只,把借来的那只还回去就可以了。

数学手抄报资料内容

数学手抄报资料内容

关于数学的笑话: 常函数和指数函数e的x次方走在街上,远远看到微分算子,

常函数吓得慌忙躲藏,说:“被它微分一下,我就什么都没有啦!”

指数函数不慌不忙道:“它可不能把我怎么样,我是e的x次方!”

指数函数与微分算子相遇。指数函数自我介绍道:“你好,我是e的x次方。”

微分算子道:“你好,我是'd/dy!'”

1、四舍五入

仔仔兴高烈地从学校里回来,问妈妈:“爸爸呢?”

妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。”

“为什么?”妈妈问道。

“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。

妈妈吃惊地问:“什么!数学才考45分?”

仔仔得意地说:“是呀,数学上要四舍五入,因此,爸爸必须付5角钱。”

如何做数学手抄报

我觉得可以从以下几方面注意。

内容上:只要和数学有关的,都可以拿来做手抄报。可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了!比如,你可以写写数学家的故事、数学文化、数学小笑话、数学趣题妙解,还可以是数学的故事,学习数学中发生的故事等等,内容很丰富。

版面上:要求造型准确外,还须善于处理色块的搭配和变化关系,而这些关系的处理要从对象的需要出发,使版面色彩丰富。 低年级手抄报的办理主要以插图为主,充满童稚和童趣。

同学们可以选择把一些剪切文章或粘贴起来,这样比较简便易行,同时也能培养学生读书看报的兴趣。其实低年级的小孩办手抄报不必要有一套程序,让他们放手写一写,配上一副画,再自己起个名,就是一个不错的作品。

中年级手抄报要注重图文并茂;对于板式有一定的要求,在内容上也要充实起来。办手抄报要用心办才对,只是希望办手抄报不要留于形式,办就办得有特色,比如:学生心得、学生空间、师生互动、课余生活、爱好与兴趣、生活常识等等。

高年级的学生办手抄报,要求相较于中低年级要有所提高。同学们在手抄报的版面设计上不仅要漂亮美观还要布局合理。

在内容上要有一定的深度和意义,讲究知识的关联系及普及性。同学们通过办理手抄报要达到巩固所学知识的目的。

办理手抄报的时间一般较长,大家要总结经验提高办报的效率,同时通过办报巩固知识。达到深化学习的目的。

数学手抄报(四年级 简单)

提示:目前仅显示的(所有颜色)

>全部尺寸>特大尺寸>大尺寸>中尺寸>小尺寸>精确

宽:

高:确定

>全部颜色

>全部类型>动态>静态>面部特写恢复默认筛选 900x610 56k

数学手抄报_数学报 1600x1200 288k

四年级数学手抄报资料 1056x730 124k

《数学真奇妙》初中手抄报 -。 900x657 110k

数学手抄报_数学大本营 x768 226k

走进数学手抄报 x768 272k

数学手抄报展 - 内容 - 苍南。 900x638 94k

数学手抄报_数学魔方 749x562 100k

第二次数学手抄报 - xmmm092。 900x624 94k

数学手抄报_趣味数学1 640x480 64k

点击本文《《数学王子高期》。 x768 286k

数学手抄报展 - 内容 - 苍南。 900x596 52k

数学手抄报_趣味数学4 1038x734 144k

点击本文《《数学的海洋》手。 x768 212k

三年级数学手抄报作品 2048x1536 828k

数学手抄报--课堂内外引入数。 900x639 80k

初中数学手抄报资料

分苹果 小咪家里来了5位同学。

小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。

这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。 小咪的爸爸是怎样做的呢? 小马虎数鸡 春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问 *** ,1/3送给养老院。

他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。

小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗? 『本文由第一范文网DiYiFanWen整理,版权归原作者、原出处所有。

』来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“ 家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”

你知道来了多少客人吗?一元钱哪里去了 三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。

那一元钱到哪去了? 数学(mathematics;希腊语:μαθηματικ?)这一词在西方源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικ?(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。

其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 数学是研究数量、结构、变化以及空间模型等概念的一门学科。

通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

数学的本质是什么?为什么数学可以运用在所有的其它科目上? 数学是研究事物数量和形状规律的科目 如果要深入的研究其本质及其扩展问题,就必须引入全集然文明专有名词了 其实数学的本质是:一门研究储空的科目 自然万物都有其存储的空间,这种现象称之为储空 要判断一个事物是否为“储空”其实很简单:只要能够套入“在**里”的**就是“储空”(包括具体和抽象)。于是大家将会发现,所有的事物都可以套入其中,也就是说:自然万物都只是不同的“储空”而已。

于是人们也发现:代数就是研究储空量的科目;几何就是研究储空形状的科目。而既然自然万物都只是不同的储空而已,那么数学当然也就可以通用于所有的科目之中了!。

抄课本上的重点内容! 可以在手抄报上画上一些三角形、平行四边形、圆柱、球、菱形等数学图,然后用彩笔装绘,最后在这些图案中写一些数学理论啊、数学趣味故事啊、数学题啊,总之你自己找点资料写上吧,希望您能办的非常漂亮!一、图形的变换

(一)教学目标

1. 使学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。

2. 进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90°。

3. 初步学会运用对称、平移和旋转的方法在方格纸上设计图案,进一步增强空间观念。

4. 让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。

(二)教材说明和教学建议

教材说明

学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,也能在方格纸上画出一个简单图形沿水平或垂直方向平移后的图形。在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。结合本单元的学习, 还安排了数学游戏“设计镶嵌图案”。 本单元教材在编排上有以下几个特点。

1. 重视学生已有的知识基础,探索两个图形成轴对称的特征和性质。

在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。

2. 注重联系生活实际,让学生在具体情境中认识图形的旋转。

本单元联系具体情境,让学生观察钟表的表针和风车旋转的过程,分别认识这些实物怎样按照顺时针和逆时针方向旋转,明确旋转的含义,探索图形的旋转的特征和性质,再让学生学会在方格纸上把简单图形旋转90°。

3. 通过大量的活动,帮助学生理解图形的对称和旋转变换,增强空间观念。

本单元不仅设计了看一看、画一画、剪一剪等操作活动,而且注意设计需要学生进行想像、猜测和推理进行探究的活动,培养学生的空间想像力和思维能力。例如,让学生判断几个图案分别是由哪种方法剪出来的。这就要求学生要根据图案的特征,不断在头脑中对这个图案进行“折叠”,并将最后的结果与下面的剪法对应起来。而且还让学生思考“还有什么剪法”,从而使学生的空间想像力和思维能力得到充分的锻炼。

教学建议

1. 注意让学生真正地、充分地进行活动和探究。

由于本单元知识是在学生已有的关于对称和旋转的知识基础上,并结合学生熟悉的生活情境进行安排的,学生完全可以通过观察、想像、分析和推理等过程,独立探究出来。因此,教师要切实组织好学生的课堂活动,为学生创造进行探究的时间和空间。不要让教师的演示或少数学生的活动和回答代替每一位学生的亲自动手、亲自体验和独立思考。这样学生的空间想像力和思维能力才能得以锻炼,空间观念才能得到发展。

2. 本单元内容可以用4课时进行教学。

(三)具体内容的说明和教学建议

(第2~11页)

1. 主题图。

教科书第2页,呈现了现实生活中利用对称、平移和旋转设计出的许多美丽的事物和图案,引出本单元内容的学习。目的是从现实生活的事物引入,让学生在欣赏图形变换所创造出的美好事物的过程中,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。

教学时,教师可以先让学生观察,说一说这些图形有什么特征。学生可能会根据图形的变换把这些图形分成几类,教师可从此处引出本单元内容的学习。

到本单元内容学习结束后,还可以再让学生观察这幅主题图,用所学的图形变换的知识对这些图形的设计进行分析,体学知识的作用和价值。

2. 例1上面的内容及例1。

教材通过例1上面的内容,让学生画对称轴的活动,帮助学生复习已有的关于轴对称图形的知识,在此基础上教学例1。在“例1”中,首先通过看一看、数一数的活动,使学生由观察“松树”这个轴对称图形,进一步观察两个“小草”图形成轴对称,从而引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。接下来,再引导学生观察轴对称图形(松树)及成轴对称的两个图形(小草)的对应点与对称轴之间有什么关系,使学生探索、发现图形成轴对称的性质,并为例2教学“在方格纸上画出一个图形的轴对称图形”做准备。

教学时,可以分三步进行。

(1)复习旧知。

让学生独立画出例1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例1。

(2)进一步认识图形的轴对称。

先让学生观察图中的“松树”和“小草”图案有什么特征。根据已有的知识,学生很容易判断出“松树”图案是轴对称图形,图中的虚线是它的对称轴(教师也可以先不出示这条虚线,让学生画出它的对称轴。)进一步学生会发现,如果沿虚线折叠,两个“小草”图案,也将完全重合。这时教师可以适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征。

(3)探索图形成轴对称的基本性质。可以引导学生分别观察“小树”这个轴对称图形和成轴对称的两个“小草”图案的各对应点(A 与A′、B 与B′、C与C′)与对称轴之间有什么关系,使学生探索、发现图形成轴对称的基本性质。

这一部分内容教学需要特殊注意的是,我们不要求学生说出准确的数学语言,只要学生能用自己的语言描述出他发现的特征和性质就可以了。

例如,两个图形成轴对称的数学概念是“如果平面到其自身的一一变换的每对对应点A、A′,都垂直于同一直线l,且被直线l 平分,则这种变换叫做关于直线l的轴对称。直线l 叫做对称轴,对应点A 和A′叫做关于轴l的对称点,在直线反射下的对应图形叫做关于轴l 的对称图形。”(马忠林,《几何学》,吉林人民出版社,年4月第1版。)在初中数学中,概括成“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴,折叠后重合的点是对应点,叫做对称点。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)在小学阶段,我们不要求学生说得这么准确,只要学生能用自己的语言把“折叠”“重合”这些基本特征概括出来就可以。

再如,图形成轴对称的基本性质,在初中数学中概括成“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)我们不要求学生概括出这样的结论,只要学生能像书上的学生那样直观描述就可以了,使学生知道“对应点到对称轴的距离相等”。

3. 例2及“做一做”。

(1)例2。

教材通过让学生画小房子的另一半的活动,借助学生已经掌握的关于轴对称的知识,使学生在能够画出轴对称图形另一半(屋顶、房体及大门)的基础上,进一步能在方格纸上画出一个图形(窗户)的轴对称图形。教材中的小精灵提问“怎样画得又好又快?”就是提示学生在动手之前,先思考好画的步骤和方法。

教学时,完全可以放手让学生独立完成。如果学生有困难,教师可以提示学生只要找到左边图形的几个关键点的对称点,再连线就可以了;可以利用已经掌握的图形成轴对称的特征和性质方面的知识来找到关键点的对称点。

(2)做一做。

教材让学生判断把一张纸连续对折三次,画上一个图形,剪出的是什么图案。学生根据书上的折法,在头脑中将彩纸展开,对这个图形先做一次轴对称变换,再对得到的图形做一次轴对称变换,得出最后的结果。在这个活动中,要让学生进行空间想像,进一步体会轴对称变换的特点。如果学生想像对折四次后剪出的图案有困难,教师可以让学生按书上的方法实际折一折、剪一剪,帮助学生进行想像。

4. 例3及相应的“做一做”。

(1)教材先通过让学生观察钟表的表针和风车旋转的过程,分别认识这些实物怎样按照顺时针和逆时针方向旋转90°,明确旋转的含义。再通过小精灵提问“风车旋转后,每个三角形有什么变化?”引导学生从图形到线段再到点的角度,来观察、探索图形旋转的特征和性质,并为例4教学“在方格纸上把一个图形按顺时针或逆时针方向旋转90°”做准备。

教学时,可以分两步进行。

①明确旋转的含义。

由于学生已经对生活中的旋转现象有所认识,可以先让学生观察钟表的指针,独立思考如何描述出“指针从‘12’到‘1’是怎样旋转的”。然后再通过交流,使学生弄清顺时针旋转和逆时针旋转的含义,明确要想表述清楚指针的旋转,一定要说清“指针是绕哪个点旋转”“是向什么方向旋转”“转动了多少度”这几点。

②探索图形旋转的特征和性质。

可以先让学生说一说,在风的吹动下,风车是如何旋转的。学生利用刚刚掌握的旋转的含义,可以说清楚风车发生了怎样的变换。

再让学生思考小精灵提出的问题“风车旋转后,每个三角形有什么变化”,探索图形旋转的特征和性质。学生会发现风车上的每个三角形都绕O点逆时针旋转了90°;旋转后的三角形的形状、大小都没有发生变化,只是位置变了。教师还可以引导学生进一步观察,学生可能会发现每个三角形的边都绕O点逆时针旋转了90°;每个顶点都绕O点逆时针旋转了90°;对应点到O点的距离都相等;对应点与O点所连线段的夹角都是90°等。必要时,可借助学具操作帮助学生理解。

这一部分内容的教学与例1类似,不要求学生用准确的数学语言进行总结和概括。例如,旋转的概念是“如果平面到其自身的一一变换,使任意一对对应点A 、A′与平面上一个定点O距离相等,∠AOA′等于指定的有向角α,而O和自身对应,则这样的变换叫做关于点O的旋转。定点O叫做旋转中心,定角α叫做旋转角,相同的指定方向叫做旋转方向。”(马忠林,《几何学》,吉林人民出版社,年4月第1版。)在初中数学中概括成“把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′ ,那么这两个点叫做这个旋转的对应点。”(《义务教育课程标准实验教科书数学九年级上册》,人民教育出版社。)在小学阶段,我们不要求学生这样说,只要学生能概括出“绕一个点旋转”“向什么方向旋转”“转动多少度”这几点就可以了。像“旋转中心”“旋转角”这些名词也不必要求学生掌握。

(2)第6页“做一做”第1题。

教材呈现了几个图案,让学生判断分别是由哪一个图形旋转而成的。在判断的过程中,要让学生说清“是哪个图形绕哪个点旋转”“是向什么方向旋转”。并让学生感受数学的美,进一步理解图形旋转的性质,体会旋转变换的特点。

5. 例4及相应的“做一做”。

(1)例4。

教材通过让学生画一画的活动,借助学生已经掌握的图形旋转的知识,使学生学会在方格纸上把一个图形按顺时针或逆时针方向旋转90°。

教学时,可以让学生小组合作完成。如果学生有困难,教师可以提示学生只要找到三角形AOB的几个顶点的对应点,再连线就可以了;在确定对应点的位置的时候,可以利用已经掌握的图形旋转的特征和性质方面的知识。如“对应点与O点所连线段的夹角都是90°;对应点到O点的距离都相等”等,再借助方格纸、三角板等,来确定顶点的对应点的位置。无论学生用哪种方法,只要能按要求画出旋转后的图形,都是可以的。必要时,可借助学具操作帮助学生理解。

(2)第6页“做一做”第2题。

教材给出一个基本图形和旋转中心O,让学生利用旋转设计一朵小花。这时,学生已经掌握了在方格纸上把一个图形旋转90°的方法,虽然题中没有给出旋转的角度和方向,学生完全可以根据所设计图案的需要自行确定。

教学时,可以放手让学生设计,再进行交流。在设计图案的过程中,要让学生在动手实践中,进一步理解旋转的特点和性质,体会旋转所创造的美。

6. 欣赏设计。

教材先让学生观察从主题中抽取出来的两幅美丽图案,感受图形变换创造的美,体会平移、旋转在图案设计中的应用。接着让学生应用对称、平移或旋转的方法设计图案并进行交流,使学生进一步感受数学美和数学方法的价值。

这是一个实践与综合应用数学知识与方法的活动,教学时可以分两步完成。

(1)指导学生在欣赏美丽的图案的同时,分析对称、平移或旋转在其中的应用,从而加深对图形变换的基本特征和方法的理解,为接下来的自主设计做准备。

(2)通过前面的学习,学生已经掌握了在方格纸上将图形平移、对称和旋转的方法。此时,教师应鼓励独立完成设计图案的任务,再在全班展示交流。学生可能分别运用平移、对称和旋转变换设计图案;也可能综合运用不同方法设计图案。教师不必作统一要求,同时注意对学生的设计要多给予肯定和赞赏。

7. 有关练习一中一些习题的说明和教学建议。

第1题,让学生利用轴对称设计美丽的图案。这时,学生已经掌握了画一个简单图形的轴对称图形。

作简单图形的轴对称图形的方法,可以放手让学生设计,再进行交流。在设计图案的过程中,要让学生在动手实践中进一步理解图形成轴对称的性质,体会轴对称变换的特点。

第2题,教科书呈现了几个剪好的图案,让学生判断分别是由哪种方法剪出来的,进一步培养学生的空间想像力和思维能力。

学生要根据图案的特征,不断在头脑中对这个图案进行“折叠”“重合”,再将最后的结果与下面的剪法对应起来,而且还让学生思考“还有什么剪法”。这个活动比“判断两个图形是不是成轴对称”所要求的想像、猜测和推理等思维活动更多,在这个活动中学生的空间想像力和思维能力能够得以锻炼,空间观念会得到发展。

如果学生有困难,教师可以调整题目的设计,反过来,让学生根据剪法,选择剪出的结果。学生根据每一种剪法,在头脑中将彩纸展开,对“半棵小芽”这个图案连续做轴对称变换,得出结果,再与上面剪出的图案对照。如果学生还有困难,教师可以让学生按书上的方法实际折一折、剪一剪,再帮助学生进行想像。

第3题,是让学生综合运用所学的有关对称、平移和旋转变换的知识进行判断。注意让学生感受数学的美,体会图形变换在现实生活中的应用。

第4题,可仿照第6页“做一做”第2题进行教学。

第5题,可仿照第4页的“做一做”和第2题进行教学。

第6题,让学生通过实验发现另一类图形“旋转对称图形”的特点。这些图形绕它们的中心旋转一定的角度,还与原来图形重合。这里不必让学生了解“旋转对称图形”这个概念,只要学生能用自己的语言描述出图形的这一特征就可以了。在教学时,可以先让学生画出每个图形的两条对称轴,确定中心O,再让学生想像这个图形在旋转过程中会出现什么现象,发现这些“旋转对称图形”的特点。如果学生有困难,教师可以通过操作帮助学生直观的看到这些现象。可以事先为学生准备一张底卡(印有这些图形的硬纸卡)和这些图形卡片,让学生画或折出两条对称轴后确定这些图形的中心O,再用大头针穿过图形卡片和底卡上相应图形的中心O,再进行旋转。

8. 数学游戏:设计镶嵌图案。

四年级学生初步了解了图形的密铺(镶嵌)现象,本单元在此基础上,通过数学游戏拓展镶嵌图形的范围,让学生用图形变换设计镶嵌图案,进一步感受图形变换带来的美感以及在生活中的应用。

本活动可放手让学生独立设计,再进行交流。分析交流丰富多彩的镶嵌图案时,不管运用了什么变换,其本质都是把可镶嵌的基本几何图形进行分割后再经过图形变换拼组而成的镶嵌图形。

教师小结时对科学性问题要纠正,同时以表扬为主。

我是摘抄的,你自己捡点,组织组织语言,把老师糊弄过去就得了

阅读全文阅读全文

猜你喜欢

随便看看