(一)电车难题
(The TrolleyProblem)
“电车难题”是学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?
电车难题最早是由哲学家Philippa Foot提出的,用来批判哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。
总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。
(二)空地上的奶牛
(TheCow in the field)
认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。
过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?
空地上的奶牛最初是被EdmundGettier用来批判主流上作为知识的定义的JTB(justifiedtrue belief)理论,即当人们相信一件事时,它就成为了知识;这件事在事实上是真的,并且人们有可以验证的理由相信它。在这个实验中,农民相信奶牛在空地上,且被送奶工的证词和他自己对于空地上的黑白相间物的观察所证实。而且经过送奶工后来的证实,这件事也是真实的。尽管如此,农民并没有真正的知道奶牛在那儿,因为他认为奶牛在那儿的推导是建立在错误的前提上的。Gettier利用这个实验和其他一些例子,解释了将知识定义为JTB的理论需要修正。
(三)定时
(TheTicking Time Bomb)
如果你关注近几年的政治时事,或者看过动作**,那么你对于“定时”思想实验肯定很熟悉。它要求你想象一个或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道的埋藏点。你是否会使用酷刑来获取情报?
与电车难题类似,定时情景也是强迫一个人从两个不道德行径中选择的问题。它一般被用作对那些说在任何情况下都不能使用酷刑的反驳。它也被用作在极端形势下法律——就像美国的严禁虐囚的法律——可以被放在第二位的例子。
归功于像《24小时》的电视节目和各种政治辩论,定时情景已成为最常引用的思想实验之一。今年早些时候,一份英国报纸提出了更为极端的看法。这份报纸提议说,如果那个恐怖分子对酷刑毫无反应,那么当局者是否愿意拷打他的妻子儿女来获取情报。
我们不反对罗尔斯,也很欣赏程序正义。我们自愿遵守法律程序,我们对正当的程序表示真心的尊重,但是,指导我们行动的,永远是心灵深处的道德法则!当程序正义或者其他任何正义与我们心灵深处的道德法则发生冲突时,我们毫不犹豫地捍卫道德的尊严;同时,一个理性的人不应当伤害程序的正义,我的朋友和苏格拉底一起做出了表率:我不逃避、不隐瞒、不后悔、不改变,我自愿接受程序的处罚。我用行动维护道德的尊严,同时甘愿用一个人的苦难维护程序的尊严。
(四)爱因斯坦的光线
(Einstein’sLight Beam)
爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。
事实上,没人确切知道这意味着什么。科学家一直都在争论一个如此简单的思想实验是如此帮助爱因斯坦完成到狭义相对论这如此巨大的飞跃的。在当时,这个实验中的想法与现在已被抛弃的“以太”理论相违背。但他经过了好多年才证明了自己是正确的。
如爱因斯坦以光速旅行,他会看到什么呢?
他什么都看不见。因为这时候根本就没有时间——时间不再流动。他的手表、电子钟、机械中一起停止运转,不是因为出了故障,而是时间在这里静止了。爱因斯坦的一根头发变得比泰山重得多。不过也不用过于担心,一根头发想压死爱因斯坦也做不到——压死他需要时间,但是这里没有时间。我们站在地球上看着爱因斯坦以光速旅行一年,但是爱因斯坦却没有经历这一年,开始和结束都在同一时刻,这中间时间丝毫没有流动,丝毫没有变化;这中间没有发生任何事,没有任何运动和变化,他当然也不曾在这期间“看见”任何东西。
(五)特修斯之船
(The Ship of Theseus)
最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。
问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?
对于哲学家,特修斯之船被用来研究身份的本质。特别是讨论一个物体是否仅仅等于其组成部件之和。一个更现代的例子就是一个不断发展的乐队,直到某一阶段乐队成员中没有任何一个原始成员。这个问题可以应用于各个领域。对于企业,在不断并购和更换东家后仍然保持原来的名字。对于人体,人体不间断的进行着新陈代谢和自我修复。这个实验的核心思想在于强迫人们去反思身份仅仅局限在实际物体和现象中这一常识。
悖论指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系.
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说.”这就是这个著名悖论的来源. 《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章).可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣. 人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:
1-2 “我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎.矛盾不可避免.它的一个翻版:
1-3 “这句话是错的”
这类悖论的一个标准形式是:如果A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环.拓扑学中的单面体是一个形像的表达.
1-4 理发师悖论
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发.”有人问他:“你给不给自己理发?”理发师顿时无言以对. 这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人.有言在先,他应该给自己理发.反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发. 因此,无论这个理发师怎么回答,都不能排除内在的矛盾.这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”.这是集合论悖论的通俗的、有故事情节的表述.显然,这里也存在着一个不可排除的“自指”问题.
1-5 集合论悖论
“R是所有不包含自身的集合的集合.” 人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R.如果R包含自身的话,R又不属于R. 继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-18,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想.这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题.例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备.
2-3 “飞矢不动” 在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别.那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如: 2-4 “飞鸟之景,未尝动也” 这是中国名家惠施的命题,与“飞矢不动”同工异曲.这就是不可抗拒的推理和不可回避的实事相冲突.
其他详细内容请参考百度百科.觉得请及时纳.
“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。它包括逻辑学、概率论、数论、几何学、统计学和时间等六个方面的数学悖论.悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
再来几个例子
伊:所有的克里特人都是撒谎者。M:他说的是真的吗?如果他说的是实话,那么克里特人都是撒谎者,而伊壁孟德是克里特人,他必然说了话。他撒谎了吗?如果他确实撒了谎,那么克里特人就都不是说谎的人,因而伊壁孟德也必然说了真话。他怎么会既撒谎,同时又说真话呢?
M:我们陷入了著名的说谎者悖论之中。下面是它的最简单的形式。甲:这句话是错的。M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。
M:颁发一枚勋章,勋章上写着:禁止授勋!
M:或者涂写一个告示:不准涂写!
M:很多年以前,一台设计用于检验语句正误的计算机中馈入了说谎者逆论。语句:“这句话是错的”。
M:这台可怜的计算机发起狂来,不断地打出对、错、对、错的结果,陷入了无休止的反复中
M:机器受到的难题就像人碰到要解答一个古老的谜?。问题:鸡和鸡蛋,到底先有哪个?M:先有鸡吗?不,它必须从鸡蛋里孵出来,那末先有鸡蛋?不,它必须由鸡生下。好!你陷入了无穷的倒退之中。
M:《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——旅游者:我来这里是要被绞死。M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧
M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
我最喜欢刮脸这个~ 不过这些都是逻辑学部分的
理发师悖论 </B> 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 说谎者悖论 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。 公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 跟无限相关的悖论 跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么? 预料不到的考试的悖论 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。” 你能说出为什么这场考试无法进行吗? 电梯悖论 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李**对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!” 这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦? 硬币悖论 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗? 谷堆悖论 谷堆悖论:显然,1粒谷子不是堆; 如果1粒谷子不是堆,那么2粒谷子也不是堆; 如果2粒谷子不是堆,那么3粒谷子也不是堆; …… 如果99999粒谷子不是堆,那么100000粒谷子也不是堆; …… 如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。这就是令整个古希腊震惊一时的谷堆悖论。 从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。 这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“Soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们? 宝塔悖论 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢? 鸡与蛋问题 世界上是先有鸡还是先有蛋? ○当然是先有鸡,只是刚开始它不是鸡,而是别的动物,后来它们的繁衍方式发生了变化,——成为了卵生,所以才有了蛋。 ○最早没有卵生动物,很多生物还是无性繁殖分裂的,后来慢慢进化成卵生和哺乳动物,所以按道理应该先进化成生物本体才可能有蛋的由来。 ○“蛋”有可能来自外星球,后来环境适应而孵化,之后在地球繁衍.....就形成了鸡生蛋,蛋又孵化成鸡。
悖论,亦作吊诡或诡局(在有些场合“佯谬”是悖论的别名),是指一种导致矛盾的命题。悖论的英文paradox一词,来自希腊语“para+dokein”,意思是“多想一想”。 如果承认它是真的,经过一系列正确的推理,却又得出它是的;如果承认它是的,经过一系列正确的推理,却又得出它是真的。 古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
英文paradox其实亦有“似非而是”的解释。即是用普通常识看上去不正确,但其实是正确或是有可能的。例如“站着比走路更累”。一般常识是走路比站着累。但要一个人例如在公园里站一个小时,他可能宁愿走动一个小时, 因为“站着比走路更累”。也例如狭义相对论里面的双生子佯谬(Twin Paradox) 亦是另外一个例子。
[编辑] 经典悖论
古希腊四大悖论
两分法悖论
芝诺悖论
飞矢不动
游行队伍悖论
钱包悖论
谎言者悖论
集合论悖论
辛普森悖论
苏格拉底悖论
书目悖论
唐·吉诃德悖论
Braess悖论
罗素悖论 (理发师悖论)
祖父悖论
生日悖论
伊壁鸠鲁悖论
全能悖论
意外绞刑悖论
全知者悖论
运动场问题(英文:The dichotomy paradox)是芝诺(Zeno)提出的四个悖论中的第一个,又称为两分法悖论。
其实四大悖论的关键就是人们没有了解自然界的一个重要概念——“率”的概念。讨论任何“变化”的问题的时候,忽略了变化发生的时候,另一个条件也在同时变化。例如讨论距离的变化的时候,如果你只考虑长度的变化,而忽略了在长度变化时另一个条件“时间”必定也在变化。这就是速率。在速度变化时,有了加速度的概念。加速度变化时,照样可以用加速度变化的多少和时间变化的多少来表示。
哲学是认识世界的方法和理论。虽然我们一旦发现了率的概念,立刻就可以破解所谓“单一条件变化悖论”,但是悖论的意义就在于激发人们寻找世界真像的好奇心。
在这4大经典悖论中,我们发现世界的变化并不是单一条件独立变化的,而是多条件同时变化的,这是事实。我们可以用距离除以时间来定义速度,但是速度本身是现实的独立的存在,而不依靠距离和时间。利用距离和时间来表示,仅仅是人们用自己能够感知的概念来表示难以感知和表示的事务罢了。比如我们天天坐汽车,但是我们难以直接感知汽车加速度的变化。但是简单的公式就可以表明这个变化了。
悖论的内容
因为一运动物体在到达目的地之前,必须先抵达距离目的地之一半的位置。即:若要从A处到达B处,必须先到AB中点C,要到达C,又须先到达AC的中点D。如此继续划分下去,所谓的“一半距离”数值将越来越小。最后“一半距离”几乎可被视为零。
这就形成了此一物体若要从A移动到B,必须先停留在A的悖论。这样一来,此物体将永远停留在初始位置(或者说物体初始运动所经过的距离近似0),以至这物体的运动几乎不能开始。因此,我们得出了运动不可能开始的结论。
见《庄子天下篇》,庄子提出:“一尺之捶,日取其半,万世不竭。”
[编辑] 悖论的解释
其实此悖论的解释如下:
此悖论在设立时有意忽略了一个事实:那就是从A到B的“运动”必须是一个时间相关的概念而不仅仅是距离的概念。也就是说如果运动的速度为0的时候这个悖论为真!但是一旦运动起来,必然有一个速度,速度等于经过的距离除以历经的时间。什么时候速度为0呢?一种情况是距离为0,根本没有要动,另一种情况大家一般会忽略掉,就是经历的时间趋近于无限,不论距离多大,只要是一个固定值,那么速度就是0,于是悖论就成立了。
此悖论虽然没有提及时间,但是却故意掩盖了时间这个因素。
这同最小分割无关,因为在数学上,无限分割是成立的。
[编辑] 物理点结构
其实这个悖论有一种解释。实际上我们日常也知道任何物体必定能在有限的时间内穿越两个点,因此这个悖论必定有解释。因为空间并不能无限地分割下去,而最小的分割限度是叫做普朗克长度。这个尺度不可以再分割成更小的尺度,因为这已经是空间里面最小的尺度了。
因此,所谓的“一般距离”虽然会越来越小,可是只会小到一个数值后就不能再分割。
生活中矛盾的例子有:
1、明明知道吸烟有害健康,有人却还吸烟。
2、明知真爱无价,却有人选择钱多的对象。
3、明知道德标准,却有人做二奶、三奶。
4、明知“不孝有三,无后为大”,有人却乐于做丁克家庭,老来却又恨膝下无儿。
5、教育孩子要诚实,可生活中我们多多少少编着善意或非善意的谎言。
6、明知顾客享用了自己的产品有一定风险危险,有商家却昧着良心生产毒害消费者的产品。
7、明知有些东西多吃无益,可我们却管不了自己的嘴,吃得不亦乐乎。
8、天天吹嘘要环保,用起一次性产品却连眉毛都不皱一下。
9、明知用了某些产品也不会回到妙龄,女士们却毫不犹豫抛洒自己的money!
1、王宝是一个五岁的小女孩,父母视她为掌上明珠,特别是母亲,经常在她耳边说:“宝贝,妈妈爱你。”小孩子都是好动的,王宝也不例外,每次母亲带她出去玩,她都会制造一些事端来。
为这妈妈没少责怪她,可小孩子的天性是好动好玩。这不又窜祸了,妈妈带她去超市买东西,进了超市,妈妈自顾自的去看商品。
王宝她走到一个卖面粉的地方,商场里的面粉,生粉还有其他什么粉都是并排放在一起的地方,王宝看见那么多白白 的东西,可能是好奇,她就站在那里把那些面粉米饭生粉舀过来舀过去,正玩的开心。
商场的工作人员看到了就过来阻止她 ,她妈妈闻声也走过来,看到这个情景就很生气,对她大声责问,王宝看见那么多大人围着她,妈妈还那么大声责骂她,她一下子吓哭了。
2、李**是一位漂亮姑娘,但却为自己的身材苦恼,1米5几的个头,却有一百二十多斤,为此她立下了一个减肥,坚持了一个星期,嫌苦累,把书丢到一边去,大吃大喝舒服去。
扩展资料
生活中许多最重要的事实表面上是矛盾的。虽然它们看起来不可能,但随着时间的推移,它们往往会通过经验得到证明。
认为自己还算是个有逻辑的人,所以当面对这些悖论时,一开始是持怀疑态度的。但事实是,生活常常是不合逻辑的,而且有时候简直是自相矛盾,令人匪夷所思。
生活中有很多事情表面上看似乎没有多大意义,而一旦你追根溯源,刨根问底,仔细观察,你还是可以从中领悟到新的启发。
有很多次,当回顾生命中经历的那些事的时候,才清楚每件事的发生都是有迹可循,甚至可以提前阻止发生的。