当前位置:灰灰分享 > 慢生活 > 详细举出生活中运用货币时间价值的事例

详细举出生活中运用货币时间价值的事例

  • 发布:2024-09-01 21:52:24
  • 42次

1.购物分期付款。看到自己想要买的东西,而手头又很紧的话,如买的是家电等耐用消费品,其使用效用可延长至好几年,可把它视为与借钱置产同样的道理,以分期付款的方式来享用耐用消费品的效用。

详细举出生活中运用货币时间价值的事例

2.广告。比如网络借贷或线下借贷,规定借款本金,及借款利率在规定时间偿还本金及利息。

3.储蓄型保单广告。常见的储蓄型保单广告,计算货币的复利时间价值。

扩展资料:

货币的时间价值产生的原因:

1.货币时间价值是稀缺性的体现

经济和社会的发展要消耗社会,现有的社会构成现存社会财富,利用这些社会创造出来的将来物质和文化产品构成了将来的社会财富。

由于社会具有稀缺性特征,又能够带来更多社会产品,所以现在物品的效用要高于未来物品的效用。

在货币经济条件下,货币是商品的价值体现,现在的货币用于支配现在的商品,将来的货币用于支配将来的商品,所以现在货币的价值自然高于未来货币的价值。

市场利息率是对平均经济增长和社会稀缺性的反映,也是衡量货币时间价值的标准。

2、货币时间价值是信用货币制度下,流通中货币的固有特征

在目前的信用货币制度下,流通中的货币是由中央银行基础货币和商业银行体系派生存款共同构成,由于信用货币有增加的趋势。

所以货币贬值、通货膨胀成为一种普遍现象,现有货币也总是在价值上高于未来货币。

市场利息率是可贷资金状况和通货膨胀水平的反映,反映了货币价值随时间的推移而不断降低的程度。

3、货币时间价值是人们认知心理的反映

人们总是对现存事物的感知能力较强,对未来事物的认识较模糊,人们存在一种普遍的心理就是比较重视现在而忽视未来。

现在的货币能够支配商品满足人们现实需要,而将来货币只能支配将来商品满足人们将来不确定需要。

所以现在单位货币价值要高于未来单位货币的价值,为使人们放弃现在货币及其价值,必须付出一定代价,利息率便是这一代价。

人工智能在生活中应用的例子

Jump-pointer: 在作LA(v,d)的时候, 如果一层一层的往上搜索很慢. 有没有可能直接跳呢? 比如我们知道LA(u,d) = LA(v,d),如果u是v的一个ancestor. 如果直接储存了LA(u,d), 并且可以在log(n)的时间"跳"到u, 那么只要log n的时间就能找到LA(v,d). 这个算法要用 O(n log n)的preprocess time + O(log n)的time. 每一次跳的距离是上一次的1/2倍.,[这个算法很简单的]。

相对论在生活中的例子有哪些?

1、虚拟个人助理

Siri,GoogleNow和Cortana都是各种渠道(iOS,Android和WindowsMobile)上的智能数字个人助理。

总归,当你用你的声响提出要求时,他们会协助你找到有用的信息;你能够说“最近的我国饭馆在哪里?”,“今日我的日程安排是什么?”,“提醒我八点打电话给杰里”,帮手会经过查找信息,转播手机中的信息或发送指令给其他应用程序。

人工智能在这些应用程序中十分重要,由于他们搜集有关恳求的信息并运用该信息更好地辨认您的言语并为您供给适合您偏好的结果。

微软标明Cortana“不断了解它的用户”,而且终究会开展出猜测用户需求的能力。虚拟个人助理处理来自各种来历的许多数据以了解用户,并更有效地协助他们组织和跟踪他们的信息。

2、游戏

事实上,自从第一次电子游戏以来,游戏AI现已被运用了很长一段时间-人工智能的一个实例,大多数人可能都很熟悉。

可是AI的复杂性和有效性在曩昔几十年中呈指数级添加,导致游戏人物了解您的行为,呼应刺激并以不行预知的方法做出反应。2014年的中心地球:魔多之影关于每个非玩家人物的个性特征,他们对曩昔互动的回想以及他们的可变方针都特别有目共睹。

“孤岛惊魂”和“使命呼唤”等第一人称射击游戏或许多运用人工智能,敌人能够剖析其环境,找到可能有利于其生存的物体或举动;他们会纳保护,查询声响,运用侧翼演习,并与其他AI进行沟通,以添加取胜的时机。

就AI而言,游戏有点简略,但由于职业巨大的商场,每年都在投入许多精力和资金来完善这种类型的AI。

3、在线客服

现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。

最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。

4、购买预测

如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。

毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。

虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。

这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。

5、音乐和**推荐服务

与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。

从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。

而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。

**推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的**。

扩展资料

人工智能应用领域

机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。

中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的。

另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口,而长虹正成为将这一浪潮掀起的首个家电巨头。

长虹发布两款CHiQ智能电视新品,主打手机遥控器、带走看、随时看、分类看功能 。

参考资料?百度百科-人工智能

生活中的测试技术的应用的例子有哪些呢?

1、在医院的放射治疗部,多数设有一台粒子加速器,产生高能粒子来制造同位素,作治疗或造影之用。氟代脱氧葡萄糖的合成便是一个经典例子。由于粒子运动的速度相当接近光速(0.9c-0.9999c),故粒子加速器的设计和使用必须考虑相对论效应。

2、全球卫星定位系统的算法本身便是基于光速不变原理的,若光速不变原理不成立,则全球卫星定位系统则需要更换为不同的算法方能精确定位。

3、磁力是一种相对论效应,如果把一圈导线穿过磁场,导线中就会产生电流。导线中的带电粒子会受到不断变化的磁场影响,磁场迫使其中一些带电粒子移动就会产生电流。

4、大多数电视和显示器还带有阴极射线管屏幕。阴极射线管的工作原理是用一块大磁铁向磷光体表面发射电子,每一个电子撞击屏幕背面时都会产生一个发光的像素。这些成像的电子速度高达30%的光速,相对论效应是显而易见的,所以当制造商制造磁铁时,他们必须考虑到这些效应。

5、金是重原子,所以内部电子运动很快,相对论质量增加是明显的,以及长度收缩。最后,电子会以更短的路径在原子核周围旋转,它具有更多的动量。内轨道中的电子携带了更接近外电子的才有的能量,并且被吸收和反射的波长更长。这使得黄金在颜色上呈**。

以上内容参考:百度百科-相对论

运筹学在生活中的运用都有哪些?

博物馆的自动报警系统、空调的控制等等。

交通预测:生活中,我们经常在使用GPS导航服务,当我们在使用GPS时,我们当前的位置和速度被保存在一个中央服务器上,用于管理流量,然后使用这些数据构建当前流量的地图。这虽然有助于防止交通堵塞,并进行拥堵分析,但问题在于配备GPS的汽车数量较少。所以在这种情况下,机器学习可以有助于根据日常经验估计可能出现拥塞的区域。

在线交通网络:当预订出租车时,该应用程序会估计出该车出行的价格。那么在这些共享服务中,如何最大限度地减少绕行呢?答案是机器学习。Uber的工程主管Jeff Schneider在一次访中透露,他们通过机器学习算法预测乘客需求来定义价格上涨时间。在整个服务周期中,机器学习扮演着十分关键的角色。

扩展资料

测控技术与仪器专业主要是研究信息的获取和处理,以及对相关要素进行控制的理论与技术。

1998年,教育部于对测控领域所有相关专业进行了合并,合并为测控技术与仪器,它是仪器类专业的唯一本科专业。

智能仪器仪表方向(偏电子):主要是从事仪器仪表,电子产品的软件,硬件研发,测试,也可以从事仪表自动控制等方面的工作。

测试计量技术与仪器方向(偏学术科研):主要是从事计量,测试检测,品质检验等的工作。

计算机测控技术方向(偏计算机):主要从事计算机应用、计算机软件和硬件等高新技术领域的设计、制造、开发和应用等工作。

数据挖掘算法与生活中的应用案例

应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关 。

运筹学,是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。

该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。

运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。

数据挖掘算法与生活中的应用案例

如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的著作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都不太好回答。但是,如果了解一点点数据挖掘的知识,你,或许会有柳暗花明的感觉。

本文,主要想简单介绍下数据挖掘中的算法,以及它包含的类型。然后,通过现实中触手可及的、活生生的案例,去诠释它的真实存在。 一般来说,数据挖掘的算法包含四种类型,即分类、预测、聚类、关联。前两种属于有监督学习,后两种属于无监督学习,属于描述性的模式识别和发现。

有监督学习有监督的学习,即存在目标变量,需要探索特征变量和目标变量之间的关系,在目标变量的监督下学习和优化算法。例如,信用评分模型就是典型的有监督学习,目标变量为“是否违约”。算法的目的在于研究特征变量(人口统计、资产属性等)和目标变量之间的关系。

分类算法分类算法和预测算法的最大区别在于,前者的目标变量是分类离散型(例如,是否逾期、是否肿瘤细胞、是否垃圾邮件等),后者的目标变量是连续型。一般而言,具体的分类算法包括,逻辑回归、决策树、KNN、贝叶斯判别、SVM、随机森林、神经网络等。

预测算法预测类算法,其目标变量一般是连续型变量。常见的算法,包括线性回归、回归树、神经网络、SVM等。

无监督学习无监督学习,即不存在目标变量,基于数据本身,去识别变量之间内在的模式和特征。例如关联分析,通过数据发现项目A和项目B之间的关联性。例如聚类分析,通过距离,将所有样本划分为几个稳定可区分的群体。这些都是在没有目标变量监督下的模式识别和分析。

聚类分析聚类的目的就是实现对样本的细分,使得同组内的样本特征较为相似,不同组的样本特征差异较大。常见的聚类算法包括kmeans、系谱聚类、密度聚类等。

关联分析关联分析的目的在于,找出项目(item)之间内在的联系。常常是指购物篮分析,即消费者常常会同时购买哪些产品(例如游泳裤、防晒霜),从而有助于商家的捆绑销售。

基于数据挖掘的案例和应用上文所提到的四种算法类型(分类、预测、聚类、关联),是比较传统和常见的。还有其他一些比较有趣的算法分类和应用场景,例如协同过滤、异常值分析、社会网络、文本分析等。下面,想针对不同的算法类型,具体的介绍下数据挖掘在日常生活中真实的存在。下面是能想到的、几个比较有趣的、和生活紧密关联的例子。

基于分类模型的案例这里面主要想介绍两个案例,一个是垃圾邮件的分类和判断,另外一个是在生物医药领域的应用,即肿瘤细胞的判断和分辨。

垃圾邮件的判别邮箱系统如何分辨一封Email是否属于垃圾邮件?这应该属于文本挖掘的范畴,通常会用朴素贝叶斯的方法进行判别。它的主要原理是,根据邮件正文中的单词,是否经常出现在垃圾邮件中,进行判断。例如,如果一份邮件的正文中包含“报销”、“”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。

一般来说,判断邮件是否属于垃圾邮件,应该包含以下几个步骤。

第一,把邮件正文拆解成单词组合,设某篇邮件包含100个单词。

第二,根据贝叶斯条件概率,计算一封已经出现了这100个单词的邮件,属于垃圾邮件的概率和正常邮件的概率。如果结果表明,属于垃圾邮件的概率大于正常邮件的概率。那么该邮件就会被划为垃圾邮件。

医学上的肿瘤判断如何判断细胞是否属于肿瘤细胞呢?肿瘤细胞和普通细胞,有差别。但是,需要非常有经验的医生,通过病理切片才能判断。如果通过机器学习的方式,使得系统自动识别出肿瘤细胞。此时的效率,将会得到飞速的提升。并且,通过主观(医生)+客观(模型)的方式识别肿瘤细胞,结果交叉验证,结论可能更加靠谱。

如何操作?通过分类模型识别。简言之,包含两个步骤。首先,通过一系列指标刻画细胞特征,例如细胞的半径、质地、周长、面积、光滑度、对称性、凹凸性等等,构成细胞特征的数据。其次,在细胞特征宽表的基础上,通过搭建分类模型进行肿瘤细胞的判断。

基于预测模型的案例这里面主要想介绍两个案例。即通过化学特性判断和预测红酒的品质。另外一个是,通过搜索引擎来预测和判断股价的波动和趋势。

红酒品质的判断如何评鉴红酒?有经验的人会说,红酒最重要的是口感。而口感的好坏,受很多因素的影响,例如年份、产地、气候、酿造的工艺等等。但是,统计学家并没有时间去品尝各种各样的红酒,他们觉得通过一些化学属性特征就能够很好地判断红酒的品质了。并且,现在很多酿酒企业其实也都这么干了,通过监测红酒中化学成分的含量,从而控制红酒的品质和口感。

那么,如何判断鉴红酒的品质呢?

第一步,收集很多红酒样本,整理检测他们的化学特性,例如酸性、含糖量、氯化物含量、硫含量、酒精度、PH值、密度等等。

第二步,通过分类回归树模型进行预测和判断红酒的品质和等级。

搜索引擎的搜索量和股价波动一只南美洲热带雨林中的蝴蝶,偶尔扇动了几下翅膀,可以在两周以后,引起美国德克萨斯州的一场龙卷风。你在互联网上的搜索是否会影响公司股价的波动?

很早之前,就已经有文献证明,互联网关键词的搜索量(例如流感)会比疾控中心提前1到2周预测出某地区流感的爆发。

同样,现在也有些学者发现了这样一种现象,即公司在互联网中搜索量的变化,会显著影响公司股价的波动和趋势,即所谓的投资者注意力理论。该理论认为,公司在搜索引擎中的搜索量,代表了该股票被投资者关注的程度。因此,当一只股票的搜索频数增加时,说明投资者对该股票的关注度提升,从而使得该股票更容易被个人投资者购买,进一步地导致股票价格上升,带来正向的股票收益。这是已经得到无数论文验证了的。

基于关联分析的案例:沃尔玛的啤酒尿布啤酒尿布是一个非常非常古老陈旧的故事。故事是这样的,沃尔玛发现一个非常有趣的现象,即把尿布与啤酒这两种风马牛不相及的商品摆在一起,能够大幅增加两者的销量。原因在于,美国的妇女通常在家照顾孩子,所以,她们常常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。沃尔玛从数据中发现了这种关联性,因此,将这两种商品并置,从而大大提高了关联销售。

啤酒尿布主要讲的是产品之间的关联性,如果大量的数据表明,消费者购买A商品的同时,也会顺带着购买B产品。那么A和B之间存在关联性。在超市中,常常会看到两个商品的捆绑销售,很有可能就是关联分析的结果。

基于聚类分析的案例:零售客户细分对客户的细分,还是比较常见的。细分的功能,在于能够有效的划分出客户群体,使得群体内部成员具有相似性,但是群体之间存在差异性。其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。

例如,针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。然后,按照距离的远近,把相似的客户聚集为一类,从而有效的细分客户。将全体客户划分为诸如,理财偏好者、基金偏好者、活期偏好者、国债偏好者、风险均衡者、渠道偏好者等。

基于异常值分析的案例:支付中的交易欺诈侦测用支付宝支付时,或者刷支付时,系统会实时判断这笔刷卡行为是否属于盗刷。通过判断刷卡的时间、地点、商户名称、金额、频率等要素进行判断。这里面基本的原理就是寻找异常值。如果您的刷卡被判定为异常,这笔交易可能会被终止。

异常值的判断,应该是基于一个欺诈规则库的。可能包含两类规则,即类规则和模型类规则。第一,类规则,例如刷卡的时间是否异常(凌晨刷卡)、刷卡的地点是否异常(非经常所在地刷卡)、刷卡的商户是否异常(被列入黑名单的商户)、刷卡金额是否异常(是否偏离正常均值的三倍标准差)、刷卡频次是否异常(高频密集刷卡)。第二,模型类规则,则是通过算法判定交易是否属于欺诈。一般通过支付数据、卖家数据、结算数据,构建模型进行分类问题的判断。

基于协同过滤的案例:电商猜你喜欢和推荐引擎电商中的猜你喜欢,应该是大家最为熟悉的。在京东商城或者亚马逊购物,总会有“猜你喜欢”、“根据您的浏览历史记录精心为您推荐”、“购买此商品的顾客同时也购买了商品”、“浏览了该商品的顾客最终购买了商品”,这些都是推荐引擎运算的结果。

这里面,确实很喜欢亚马逊的推荐,通过“购买该商品的人同时购买了**商品”,常常会发现一些质量比较高、较为受认可的书。一般来说,电商的“猜你喜欢”(即推荐引擎)都是在协同过滤算法(Collaborative Filter)的基础上,搭建一套符合自身特点的规则库。即该算法会同时考虑其他顾客的选择和行为,在此基础上搭建产品相似性矩阵和用户相似性矩阵。基于此,找出最相似的顾客或最关联的产品,从而完成产品的推荐。

基于社会网络分析的案例:电信中的客户客户和社会网络,最早出现在电信领域的研究。即,通过人们的通话记录,就可以勾勒出人们的关系网络。电信领域的网络,一般会分析客户的影响力和客户流失、产品扩散的关系。

基于通话记录,可以构建客户影响力指标体系。用的指标,大概包括如下,一度人脉、二度人脉、三度人脉、平均通话频次、平均通话量等。基于社会影响力,分析的结果表明,高影响力客户的流失会导致关联客户的流失。其次,在产品的扩散上,选择高影响力客户作为传播的起点,很容易推动新套餐的扩散和渗透。

此外,社会网络在银行(担保网络)、保险(团伙欺诈)、互联网(社交互动)中也都有很多的应用和案例。

基于文本分析的案例这里面主要想介绍两个案例。一个是类似“扫描王”的APP,直接把纸质文档扫描成电子文档。相信很多人都用过,这里准备简单介绍下原理。另外一个是,江湖上总是传言红楼梦的前八十回和后四十回,好像并非都是出自曹雪芹之手,这里面准备从统计的角度聊聊。

字符识别:扫描王APP手机拍照时会自动识别人脸,还有一些APP,例如扫描王,可以扫描书本,然后把扫描的内容自动转化为word。这些属于图像识别和字符识别(Optical Character Recognition)。图像识别比较复杂,字符识别理解起来比较容易些。

查找了一些资料,字符识别的大概原理如下,以字符S为例。

第一,把字符图像缩小到标准像素尺寸,例如12*16。注意,图像是由像素构成,字符图像主要包括黑、白两种像素。

第二,提取字符的特征向量。如何提取字符的特征,用二维直方图投影。就是把字符(12*16的像素图)往水平方向和垂直方向上投影。水平方向有12个维度,垂直方向有16个维度。这样分别计算水平方向上各个像素行中黑色像素的累计数量、垂直方向各个像素列上的黑色像素的累计数量。从而得到水平方向12个维度的特征向量取值,垂直方向上16个维度的特征向量取值。这样就构成了包含28个维度的字符特征向量。

第三,基于前面的字符特征向量,通过神经网络学习,从而识别字符和有效分类。

文学著作与统计:红楼梦归属这是非常著名的一个争论,悬而未决。对于红楼梦的作者,通常认为前80回合是曹雪芹所著,后四十回合为高鹗所写。其实主要问题,就是想确定,前80回合和后40回合是否在遣词造句方面存在显著差异。

这事让一群统计学家比较兴奋了。有些学者通过统计名词、动词、形容词、副词、虚词出现的频次,以及不同词性之间的相关系做判断。有些学者通过虚词(例如之、其、或、亦、了、的、不、把、别、好),判断前后文风的差异。有些学者通过场景(花卉、树木、饮食、医药与诗词)频次的差异,来做统计判断。总而言之,主要通过一些指标量化,然后比较指标之间是否存在显著差异,藉此进行写作风格的判断。

以上是小编为大家分享的关于数据挖掘算法与生活中的应用案例的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文阅读全文

猜你喜欢

随便看看