生活中的数学论文如下:
在我们的日常生活中,数学无处不在。从早上起来,我们就会碰到各种各样的问题,这些问题都需要数学来解决。
例如,在早餐的时候,我们会需要数学来计算我们需要的食品的比例;在购物的时候,我们需要数学来计算我们所需商品的总价;在我们每天工作的时候,我们会需要数学来计算我们每天完成任务所需的时间。
论文
论文是一个汉语词语,拼音是lùnwén,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。
它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
知识拓展:
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目和作者姓名一定要写在表皮上,不要写里面的补页上。
摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广。
高中数学论文:谈影响高中数学成绩的原因及解决方法
有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力。然而并非都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。笔者在2002年暑期间参加新疆高中数学骨干教师培训时,有几位给我们授课的文科专家学者,就谈到自己在上高中时虽然很想学好数学,可就是数学成绩提不高,最怕见高中数学老师。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下:
面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面。
1.被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。
2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3.不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不取补救措施,查缺补漏,分化是不可避免的。
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当取以加强学法指导为主,化解分化点为辅的对策:
1.加强学法指导,培养良好学习习惯。
良好的学习习惯包括制定、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
2.循序渐进,防止急躁
由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
3.研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。
4.加强辅导,化解分化点
如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方教师应当取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
数学教学论文参考文献
教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有所帮助!
参考文献一
[1]杜威着,许崇清译:《哲学的改造》[M],商务印书馆.1958 年,P46
[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)
[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).
[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,2009.5
[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185
[6]袁振国.当代教育学[M].教育科学出版社,2004,P184
[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.
[8]周军.教学策略[M].北京:教育科学出版社,2007,P11
[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011
[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101
[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102
[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.2010.P132
参考文献二
[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.
[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.
[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.
[4]虞应连.用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).
[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.
[6]茹建文.关于构建小学数学发展性评价体系的'思考[J].现代教育科学,2005(2).
[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.
[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.
[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).
[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).
[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.
[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).
[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.
[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).
;.什么是数学
数学是研究现实世界空间形式和数量关系的一门科学.分为初等数学和高等数学.它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
数学符号的引入
用一句话说,数学是无穷的科学.
2.数学的特点
严谨
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思.亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理.今日,数学家们则持续地在争论电脑证明的严谨度.当大量的计量难以被验证时,其证明亦很难说是有效地严谨.因为时代的差别、也抹去了不少知识、但是数学永不磨灭、永远流传智慧.
3.数学的应用
生活离不开数学,数学离不开生活,数学知识源于生活而高于生活,最终服务于生活。的确,学数学就是为了能在实际生活中应用。数学就是人们用来解决实际问题的,其实数学问题就产生与生活中。比如:上街买东西要用到加减乘除法,修建房屋用到做平面图等,这样的问题数不胜数,这些知识就是在生活中产生的。在数学教学中,我们要给学生实践活动的机会,引导学生自觉运用数学知识,用数学知识和方法分析与解决生活中的实际问题,使生活问题数学化,从而让学生更深刻地体会到数学的应用价值。
《课标》强调从学生已有的生活经验出发,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程。其实小学数学的教学内容绝大多数可以联系学生的生活实际,老师要找准每节课的内容与学生生活实际的“切合点”,调动学生学习数学的兴趣和参与学习的积极性。在教学中老师的责任不仅是诱发学生解决现实问题的欲望,更应让学生学会从众多条件、众多信息中选出需要的条件、信息,来解决现实生活中的问题,体验应用数学解决实际问题的成功与快乐。
一、 解决生活中的问题 ,做到学以致用
新课程标准指出,要让学生“认识到现实生活中蕴涵着大量的数学信息。数学在现实世界中有着广泛的应用,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略……”。我们经常会遇到这种情况,一道题目讲了很久学生还弄不懂。如果老师将这道问题与生活实际联系起来,学生马上就能解决。因此作为教师应该思考,如何充分利用学生已有的生活经验,引导学生把数学知识运用到现实中去,以体会数学在生活中的应用价值。
二、 创设生活情景,激发学习兴趣
应用题源于生活,每道应用题总可以在生活中找到它的蓝本。因此,我们在应用题教学中如果把应用题与生活实际结合起来,就可以激发学生的学习兴趣。
三、 还原生活本质,培养学生思维
在注重数学生活化的同时,我们每一个教师一定要充分认识到数学教学的本质是发展学生的思维。生活化并不意味着数学知识的简单化,相反,还原数学以生活本质更有利于学生思维的发展。
我曾看到过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针重合几次?”那些学生都从手腕上摘下手表,开始拨表针;而这位教授给中国学生讲同一个问题时,学生们就会套用数学公式来进行计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子里的,不能灵活应用,很少想到在实际生活中学习、应用、掌握数学知识。
四、 实现生活需要,促进主体发展
从教育心理学来看,在生活中有五种不同层次的需要,最高需要便是自我实现的需要,一种决策的需要。我们在教学中一旦把应用题教学与生活联系起来,学生这种潜在的需要就更加强烈。
五。 数学的重要性
以名言为证:
万物皆数--毕达哥拉斯
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.——毕达哥拉斯
数学符号之美
数统治着宇宙.--毕达哥拉斯
几何无王者之道.——欧几里德
我决心放弃那个仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何.——笛卡儿(Rene Descartes 1596-1650)
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源.数学是不变的,是客观存在的,上帝必以数学法则建造宇宙.——笛卡儿
虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物.——莱布尼茨(Gottfried Wilhelm von Leibniz 1646-1716)
不发生作用的东西是不会存在的.——莱布尼茨
考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标.——莱布尼茨
虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构设足以解释许多现象.——欧拉(Leonhard Euler 1707-1783)
因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情.——欧拉
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王.——高斯
数学是自然科学之首,而数论是数学中的皇后.——高斯
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
在数学这门科学里,我们发现真理的主要工具是归纳和类比.——拉普拉斯
读读欧拉,读读欧拉,他是我们大家的老师.——拉普拉斯
一个国家只有数学蓬勃发展,才能表现她的国力强大.——拉普拉斯
认识一位巨人的研究方法,对於科学的进步并不比发现本身更少用处.科学研究的方法经常是极富兴趣的部分.——拉普拉斯
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误.——柯西(Augustin Louis Cauchy 1789-1857)
写满数学公式的纸
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴.——柯西
人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展.——柯西
几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的.——西尔维斯特(James Joseph Sylvester 1814-18)
也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多.——西尔维斯特
一个没有几分诗人才能的数学家决不会成为一个完全的数学家.——魏尔斯特拉斯(Karl Weierstrass 1815-18)
数学的本质在于它的自由.——康扥尔
数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康托尔
只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.——克莱因
没有那门学科能比数学更为清晰的阐明自然界的和谐性.---Carus,Paul
问题是数学的心脏——P.R.哈尔莫斯
哪里有数,哪里就有美!——普洛克拉斯
逻辑是不可战胜的,因为要反对逻辑还得要使用逻辑.——布特鲁
数学分系统自然界本身同样的广阔————傅立叶
逻辑可以等待,因为它是永恒————亥维赛
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步. ——马克思
数学是无穷的科学.——赫尔曼·外尔
历史使人聪明,诗歌使人机智,数学使人精细.——培根
一个国家的科学水平可以用它消耗的数学来度量.——拉奥
没有哪门学科能比数学更为清晰地阐明自然界的和谐性.——卡罗斯
数学是规律和理论的裁判和主宰者.——本杰明
六.数学与文化
数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
7.数学占考试的分值
中考(江苏):
语文,满分150数学,满分150英语,满分130物理,满分100化学,满分100历史,满分50政治:满分50体育,满分40
高考:
语文 150 数学 150英语 150 文综(理综)300总分 750
由此可见,数学无论是在生活与学习中都有重大的作用。
1.参考文献:
百科词条“数学”
://baike.baidu/link?url=8EuGUWlrUe9VBteSuFiXcT87SWYrwIV7B_jum5advHZu2EiNS0CtPjcnopHmfEAB
2.数学成绩计入文化考试总分
://news.artxun/jingdezhentaoci-1282-6406456.shtml
3.百度百科“数学与文化”词条
://baike.baidu/link?url=pMPMrsPNHIIqNCNdzCy-zwcKT-ccIxgIQ6itzYTYh_ZirDhpZnUYQ_h0ewDB7m1ke8F589QyTzQ1Yvu_yjfweK
请广大读者阅读参考
是否可以解决您的问题?
浅谈数学中的美 摘要:“哪里有数学,哪里就有美”。只要我们用心体会,它们就会呈现出来,给我们以美的享受。关键词:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等 当你倘佯在音乐的殿堂,聆听那优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。下面结合初等数学谈谈我对数学美的理解。
1 数学概念的简洁美
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
2 符号美、抽象美、统一美
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍);七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。
3 结构系统的协调美、对称美
数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。 4 公式的普遍性
世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
5 应用的广泛性
随着科学的发展和社会的进步,数学也越来越多的渗透到科学技术乃至社会生活的各个领域。到银行存款,会遇到利率的问题;铅球运动员应懂得应如何投掷才能取得理想成绩;足球运动员也要明白在何处出脚才最易命中对方的球门……此外,数学家把聪明给了电子计算机,电子计算机也使数学家变得更聪明。一句话“哪里有生命,哪里就有数学”。这也正是数学应用广泛性的体现,也是数学美的重要内容。
6 奇异美
奇异性就是新颖性、开拓性。我们以“√2”的出现为例。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。及“√2”不能表示成两整数之比,这种奇异的结果导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。
此外,数学中的“勾股定理”“黄金分割”更是数学美的具体体现。勾股定理像一颗璀璨的明珠,具有无穷的魅力,使不少人为之倾倒,现有的证法至少有370种,成为世界上证法最多的的定理。黄金分割被广泛的应用在建筑建设,音乐美术等各方面。如五角星的各边是按黄金分割处理的;设计工艺品或日常品的宽和长时常设计成宽与长的比近似为0.618,0.618这个数是古希腊欧多克斯发现的,有趣的是,从此以后,这个数与人类有许多不解之缘:希腊女神体态轻柔优美,引人入胜。经专家研究,她的身体从脚到肚脐之间的距离与整个身高的比值,恰好是0.618。画家、艺术家 将其引入到绘画、雕塑等艺术领域,让作品变得更加和谐、美丽;舞台的报幕员也总是喜欢站在舞台0.618处时,音响效果最好,而且人也显得自然、大方。 人在气温23℃左右,最舒服,生理功能发挥得最好。这些都是源于黄金分割原理。
数学美除了以上具体内容外,还有在于数学教学当中。教师绘声绘色的讲解、精辟的分析、巧妙的点拨、生动的语言、合理的板书等都给学生以美的享受。教学中教师应当经常有意识的向学生讲解数学发展史,数学的广泛应用,不断展示数学的美,进一步理解美的真正含义。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。它可以改变人们认为对数学枯燥无味的成见,让人们认识到数学也是一个五彩缤纷的美的世界。如果说数学使许多人心旷神怡,并为之付出毕生的精力,从而促进了数学学科的飞速发展,那么,它也一定能够激发更多的有志青年追求知识,探索未来的强烈愿望,因为“美”在数学中存在。 参考文献[1](英)罗素《我的哲学的发展》商务印书馆出版 1985:153[2] 北大美学教研室编《西方美学家论美和美感》 商务印书馆 1980:19[3]《数学译林》年,第三卷第3期,P246-265[4](美)L·A·斯蒂恩主编《今日数学》 上海科学技术出版社出版1982:12
追问:确定管用吗?回答:再修改些字体 文献综述的格式百度里都有 把字体改改追问:不管用怎么办?回答:浅谈数学中的美 摘要:“本文针对当前数学教育中学生苦学、厌学的现象,从美学关于美的形象性、情感性、新颖性和功利性等特点着眼,试图探索美的观赏与智力开发、教学原则与美学原则的一致性,以便提高学生学习数学的兴趣和数学教学水平.关键词:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等 数学,如果正确的看,不但拥有真理,而且也具有至高的美。
------罗素
最有益的即是最美的
------苏格拉底
数学能促进人们对美的特性:数值、比例、秩序等的认识。
------亚里士多德 当你倘佯在音乐的殿堂,聆听那优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。下面结合初等数学谈谈我对数学美的理解。
1 数学概念的简洁美 数学简化了思维过程并使之更可靠.
------弗赖伊(T.C.Fry)
算学中所谓美的问题,是指一个难以解决的问题;而所谓美的解答,这是指对于困难和复杂问题的简单回答.
------狄德罗
宇宙之大、粒子之微、火箭之速、画工之巧、地球质变、生物之谜。日用之繁、……无不可用数学表述.
------华罗庚
数学是上帝用来书写宇宙的文字.
------伽利略
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
2 符号美、抽象美、统一美 数学也是一种语言,且是现存的结构与内容的结构与内容方面最完美的语言.……可以说,自然用这个语言讲话;造世主已用它说过话,而世界的保护者继续用它讲话.
------C·戴尔曼就其本质而言,数学使抽象的;世纪上他的抽象比逻辑的抽象更高一阶.
------G.Chrystal
自然几乎不可能不对数学推理的美抱有偏爱.
------C.N.杨
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍);七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。
3 结构系统的协调美、对称美
对称是一个广阔的主题,在艺术和自然两方面都意义重大.数学则是他的根本.
------H.Weyl 数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。 4 公式的普遍性
世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
5 应用的广泛性
随着科学的发展和社会的进步,数学也越来越多的渗透到科学技术乃至社会生活的各个领域。到银行存款,会遇到利率的问题;铅球运动员应懂得应如何投掷才能取得理想成绩;足球运动员也要明白在何处出脚才最易命中对方的球门……此外,数学家把聪明给了电子计算机,电子计算机也使数学家变得更聪明。一句话“哪里有生命,哪里就有数学”。这也正是数学应用广泛性的体现,也是数学美的重要内容。
6 奇异美
奇异性就是新颖性、开拓性。我们以“√2”的出现为例。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。及“√2”不能表示成两整数之比,这种奇异的结果导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。
数学美学方法的特点
1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。
2、情感性
数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。
3、选择性
数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。
4、评价性
数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。
数学美学方法运用的基本途径
1、增强审美自我意识,善于发现数学美因
在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。
2、在数学审美活动中,注意逻辑方法与直觉方法的结合。
美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。
3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。
数学美除了以上具体内容外,还有在于数学教学当中。教师绘声绘色的讲解、精辟的分析、巧妙的点拨、生动的语言、合理的板书等都给学生以美的享受。教学中教师应当经常有意识的向学生讲解数学发展史,数学的广泛应用,不断展示数学的美,进一步理解美的真正含义。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。它可以改变人们认为对数学枯燥无味的成见,让人们认识到数学也是一个五彩缤纷的美的世界。如果说数学使许多人心旷神怡,并为之付出毕生的精力,从而促进了数学学科的飞速发展,那么,它也一定能够激发更多的有志青年追求知识,探索未来的强烈愿望,因为“美”在数学中存在。 参考文献[1](英)罗素《我的哲学的发展》商务印书馆出版 1985:153[2]北大美学教研室编《西方美学家论美和美感》 商务印书馆 1980:19[3]《数学译林》年,第三卷第3期,P246-265[4](美)L·A·斯蒂恩主编《今日数学》 上海科学技术出版社出版1982:12[5] 吴振奎、吴振奎 《数学中的美》上海教育出版社 2002-01出版 我修改了哈 嘿嘿 别人不可以转载的哈
[1]计算机芯片的发展史
樊莉丽;董先明;, 信息与电脑(理论版), 2010,(05), 192
本文阐述了芯片对现代科技的重要作用,详细介绍了芯片的发展历史,并以芯片业巨头英特尔公司为参照对象,把芯片发展分阶段进行了总结。
[2]一种对计算机发展史展开研究的策略
应国良;马立新;, 中国教育信息化, 2010,(07), 15-16
计算机是一种人造物,是历史的产物,其进化与更新换代凝聚了若干人的智慧。随着一线教学的深入,笔者认识到若不从历史源头上对计算机发展过程予以整体上的把握,将不利于进一步参与和推动它的发展。本文在先前研究者若干研究成果的基础上,提出一种研究策略和思路:以需求产生与满足为引子,以软硬交替发展为主线,以性能不断提高为成果,以突出学科交叉为亮点。
[3]论计算机发展史及展望
杨露斯;黎炼;, 信息与电脑(理论版), 2010,(06), 188
自从1945年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,CPU的速度越来越快,体积越来越小,价格越来越低。未来光子、量子和分子计算机为代表的新技术将推动新一轮超级计算技术革命。
[4]充满创新火花的计算机发展史
刘瑞挺;, 计算机教育, 2009,(05), 129-130
<正>回顾计算机发明的历史,每一台机器、每一颗芯片、每一种操作系统、每一类编程语言、每一个算法、每一套应用软件、每一款外部设备……无不像闪光的珍珠串在一起,令人赞不绝口。每个事例都闪烁着智慧的火花,每件史料都述说着创新的思想。在计算机科学技术领域,这样的史实就像大海岸边的贝壳,俯拾皆是;当然,要找到珍珠就得下专门功夫了。
[5]信息技术教师应该读什么书(二) 计算机及信息技术发展史
魏宁;, 中国信息技术教育, 2009,(15), 91-93
<正>列举信息技术的应用实例,了解信息技术的历史和发展趋势历来是信息技术教师较为头疼的地方。因为通常这一课是在教室中作为理论课来上的,而教材上相关的内容又较为浅显并显得知识容量不足。教师不得不精心备课,
[6]浅析计算机发展史
程兴中;, 辽宁行政学院学报, 2008,(06), 248+252
简述了从第一个计算机出现到现在,计算机随着操作系统和互联网的发展而进化的过程。并对网络的各种类型和特点进行了分析。
[7]从汉字发展史看计算机汉字输入对汉字发展的影响
周凤英;, 洛阳工业高等专科学校学报, 2005,(04), 46-47+79
汉字在经历了近百年的汉字落后论的批判之后,迎来了“汉字优越论”的曙光,这两种截然相反的论调让 我们深思这样一个问题:在信息高速发展的社会中,应该怎样正确对待计算机汉字输入对标志中华民族文化的汉 字及其发展产生的冲击呢?本文以历史的眼光,纵观汉字发展史,对计算机汉字输入将会给汉字发展产生的影响 进行了较为深入的剖析。
[8]浅谈CPU发展史及计算机发展前景
黎菁, 电脑知识与技术, 2004,(17), 61-63
本文首先简单回顾了计算机的发展情况,然后介绍了计算机硬件中最重要部分的中央处理器简单原理并着重了它的发展史。然后根据摩尔定律对计算机硬件的发展历史和前景、计算机硬件软件化做了一番介绍。
[9]计算机科学发展史上的里程碑
王亚军, 计算机时代, 2004,(07), 7-8
回顾计算机科学的发展历程,可以发现计算机科学的基本理论和原型技术近二十年来没有什么实质性的突破,计算机科学期待着一场新的革命。
[10]难以忘却的——计算机发展史
谌谦;, 中国中医药现代远程教育, 2004,(07), 47-48
<正> 计算机是一种机器,是人类发明的一种工具。但是它与人类发明创造的其它工具有着本质的不同。人类发明的机器大多可以看作是人的手或脚的延伸。它们能够完成的是人原本需要耗费体力去完成的事情。而计算机则不同,它可以看作是人头脑的延伸,能帮助人做那些需要耗费人脑力完成的工作。计算机的发展逐渐改变着我们的生活。这当然离不开人类科技知识的
[11]计算机硬件史话——回顾CPU散热器的发展史
小甘;, 少年电世界, 2003,(05), 76-77
<正> 大家都知道电脑的核心部件是CPU,它能否正常工作至关重要,而保护它正常工作的部件之一有散热器的责任。随着电脑的飞速发展,散热器也取得了相应的进步,它前后经历了从风冷散热到热导管再到最新的液冷散热。它们之间有什么不同,它们又是怎样发展的呢?让我们共同关注一下它们的情况吧。
[12]历届图灵奖得主简介——《ACM图灵奖(1966—1999)——计算机发展史的缩影》
刘建元,康兆华, 中国大学教学, 2000,(06), 27
[13]大脑的延伸──计算机发展史
孙小美;, 中国科技月报, 1998,(07), 60-62
[14]步履维艰 前途光明——哈尔滨方正公司计算机部发展史
张亚欣, 中外企业家, 19,(11), 6
<正> 记得在93年9月份,来自总部的消息,北大方正集团成为美国Digtal PC中国唯一总代理,心里踌躇。方正排版方兴未艾,怎么又有时间做PC?何总前瞻未来,迅速做出在方正分公司成立计算机部的决定。由于本人的爱好,这方面又稍有特
[15]计算机发展史上的“世界第一”
中国培训, 1995,(10), 45
<正> 1.最早的第一种计算工具—— 算筹,是中国发明的,约在公元前一 千多年前,在公元六世纪算筹转变为 算盘。 2.第一把计算尺是1620年英国 E·冈特发明的,是一种直线式对数计算尺。 3.第一台能进行加减运算的机械计算机是法国B·帕斯卡1642年发明的,利用齿轮进行转动。 4.第一个发明二进制的逻辑代数的是英国G·布尔,布尔代数后来成为电子计算机硬件和软件设计的基础。
[16]电子计算机发展史
何力;, 人民教育, 1985,(03), 44
<正> 第一代电子计算机1946年诞生于美国的陆军阿贝丁炮击场。它是一个庞然大物,占地面积170平方米,重量达30多吨,运算速度为每秒5,000次。它使当时的一切运算工具相形见绌。人工需要一个星期才能完成的弹道轨迹计算,它仅用3秒钟就完成了。
[17]计算机五十年代发展史
陈厚云,王行刚, 自然辩证法通讯, 1983,(04), 39-47
<正> 五十年代是计算机从实验室走向实用化,从单机试制转向工业生产,计算机应用从科技计算扩展至数据处理的时期。这段历史所揭示的计算机行业的许多重要特征和发展规律,对于计算机发展后进的国家,至今仍然不无启迪。一、从实验室到实用化四十年代后期,美国普林斯顿高级研究所(The Institute for Advanced Study-IAS)云集了许多著名学者和工程师。其中有冯·诺依曼(von Neumann),研制美国第一台电子数字
[18]信息时代的黎明——七十年代计算机发展史
王行刚;陈厚云;, 自然辩证法通讯, 1982,(04), 51-59
<正> 一、微型机迅猛拓广七十年代计算机发展最重大的莫过于微型机的诞生和迅猛拓广。1969年8月,一个年轻的设计人员,现在Zilog公司的创始人F.Faggin,提出了一项大胆的设想:(1)将日本设计的台式计算机中11片逻辑电路压缩成3片,即中央处理机、读写存储器和只读存储
[19]电脑的成长:六十年代计算机发展史
陈厚云;王行刚;, 自然辩证法通讯, 1980,(06), 52-63
目前我国计算机事业的发展状况,从总的来看,大体上相当于美国六十年代初期水平。因此,研究国外、尤其是美国六十年代计算机发展所走过的道路,探讨分析其经验教训,对于我国计算机事业的今后发展是会有所启发、有所借鉴的。本文所作的是一个尝试。
[20]火力发电厂用控制计算机的发展史
二川原诚逸;胡树松;, 华北电力技术, 19,(Z2), 82-92+112
日本日立公司应北京电业管理局的要求于18年6月在陡河电站进行了一个多月的讲课,介绍有关控制机的情况,现将其中“控制机发展史”及“汽机、锅炉数学模型的建立方法”整理印出,以供参考。北京电业管理局控制机讲习班 19年2月1日
[1]生活情境法在大学计算机信息技术实验教学案例中的应用研究
周蕾;, 长春理工大学学报, 2010,(09), 185-187
针对大学计算机信息技术实验教学过程中出现的问题,以建构主义理论中抛锚式和支架式教学模式为依据,结合学生熟悉的生活情境,设计一套联系紧密的实验教学案例,让学生在教师搭建的脚手架帮助下,完成知识的意义建构过程。实验证明,该模式可以有效提高学生的信息素养和实践能力,提高课堂教学效率和效果。
[2]浅议中职《计算机应用基础》课程教学职业生活化实践
万兰平;, 科技信息, 2010,(29), 275+237
《计算机应用基础》课程是中职学生的基础课程,我们希望学生通过学习这门课程,真正做到将所用于将来的职业生活的目的。对于我们职业学校的基础课程教师来说,我们应考虑如何让学生未来的职业生活走进我们的《计算机应用基础》课程教学。如何让抽象的计算机基础知识贴近职业生活?如何使计算机知识运用于职业生活?教师应该尝试创设具有专业职业生活气息,贴近学生认知水平的问题引入,举例职业生活实例,根据知识特点情况,将所教知识,点滴渗透,从而构建职业生活化实践的《计算机应用基础》教学。
[3]改进日常生活中应用计算机检索信息的探讨
权彦清;, 经营管理者, 2010,(23), 367
互联网高速发展,信息爆炸的时代,计算机在我们获得信息的渠道上占据重要地位。本文从细节出发,介绍在日常生活中如何更好利用搜索引擎以及相应的搜索策略,让我们在浩如烟海的信息中找到自己所需要的资料。
[4]影像格式在计算机教学中与生活中的应用
谢静波;, 科技信息(学术研究), 2008,(32), 553-554
在我们的教学与日常生活中,音频、与我们紧密相连,教学怎样制作多媒体课件;日常生活中有手机、电视、电脑、MP4、MP5等等,怎样用好这些电器;随着网络的高速发展,流式格式越来越多,怎样上网看电视,下载?这都是摆在现代人前面的问题。本文从四个方面介绍影像格式与应用:一、本地影像;二、网络影像;三、格式大转换;四、在教学与生活中的应用。
[5]计算机应用与我国少数民族生活方式
何国强, 广西民族研究, 2000,(03), 29-34
从 1 98 5年起 ,计算机软件开发和大规模产业化的发展将第三次技术革命推进至信息革命时代。电子计算机的应用开始渗透到了几乎一切生产领域 ,也正一步一步地走进人们的生活。本文从生活方式的角度分析计算机对人们的影响 ,以及对计算机在少数民族中应用的忧思 ,并提出利用计算机发展民族地区经济的建议
[6]计算机在生活小区物业管理中的应用
莫继红, 电脑与信息技术, 19,(04), 29-30
本文提出了用计算技术实现生活小区物业管理的一种方法,重点讨论了物业管理的目标以及应用系统的设计方法。
[7]计算机在日常生活中的应用
赵国求;, 武钢技术, 1985,(01), 74
<正> 一、手表计算机日本制造了一种既可做手表用,又具有计算机功能的超小型手表计算机。它由手表,键盘和控制器三部分组成,手表可以单独使用,如果与键盘连结在一起,就成了一部完整的超小型计算机。手表内装有中央运算处理装置和五个大规模集成电路,可存储二千个单字和一百个左右的电话号码或七十个人的通讯地址。
数学与应用数学论文选题方向如下:
1、确定研究主题:首先需要确定一个具体的研究主题,这通常是一个未解决的问题或未完全解决的问题。选择一个自己感兴趣且具有一定研究价值的主题。
2、查阅文献:在开始写作之前,需要查阅相关的数学文献,了解该领域已有的研究成果、常用的方法和技术。这有助于更好地理解问题,并为自己的研究提供背景和参考。
3、制定研究方法:根据文献综述,选择一个或多个合适的研究方法,并详细说明如何实施这些方法。这包括定义变量、建立模型、选择合适的统计或数学工具等。
4、收集和分析数据:根据所选的研究方法,收集相关的数据并进行必要的分析。这可能涉及到实际收集数据、对数据进行预处理、进行统计分析等步骤。
5、撰写论文:在完成数据分析和研究后,开始撰写论文。论文应包括以下部分:摘要:简要概括论文的主要内容、研究方法和结论。引言:介绍研究背景、研究目的和意义,以及论文的结构。文献综述:回顾与本研究相关的已有文献,阐述研究现状和存在的问题。
方法论:详细描述研究方法,包括数据来源、处理和分析过程等。结果与讨论:呈现研究结果,并对结果进行必要的解释和讨论。结论:总结研究成果,并指出研究的局限性和未来研究方向。参考文献:列出论文中引用的所有文献,以增强论文的可信度和可读。
修订与完善:完成初稿后,需要进行多次修订和完善。检查语法、拼写错误,确保论文内容连贯、逻辑清晰。也可以请同行或导师审阅论文,提出宝贵的意见和建议。投稿与发表:将完成的论文提交给学术期刊或会议进行审稿。根据审稿人的反馈进行必要的修改和调整,最终达到发表要求。
写数学论文需要经过充分的准备和研究过程,注重方法的合理性和数据的可靠性。通过反复修订和完善,最终呈现出一篇具有学术价值的论文。