除得尽是一个数学概念,指的是一个整数除以另一个整数时,得到的商和余数均为整数,且余数为0的情况。
1、除得尽的整数称为可除数,它们具有一些特殊的性质。比如,可除数的末位数字必须是0、2、4、6、8中的一个,因为它必须是5的倍数才能被5整除,必须是3的倍数才能被3整除等等。
2、除得尽的性质也包括一些重要的推论。比如,如果一个整数可以被另一个整数整除,那么它的倍数也可以被这个整数整除。这是因为倍数等于原数乘上某个整数,而乘法与除法互为逆运算,因此倍数除以这个整数的商也等于原数除以这个整数的商乘上这个整数。
3、我们还经常用到一些重要的定理来判断两个整数是否互质。如果两个整数互质,那么它们的最大公约数就是它们的乘积的因数。如果两个整数不互质,那么它们的最大公约数就是它们中的任意一个因数。
4、对于分数而言,如果一个分数可以被另一个分数整除,那么它的分子除以分母所得的商也要乘以分母的倒数。这个结论可以帮助我们更好地处理分数之间的运算关系。
除法的应用:
1、在财务管理中的应用:在财务管理中,除法用于计算投资回报率、计算利息以及制定有效的财务策略等。比如,如果你想开一家咖啡店,你需要计算每杯咖啡的成本、每天的利润等,这时就需要用到除法。
2、在工程领域的应用:在工程领域,除法也用于计算建筑物的重量和尺寸以及其他各种实际问题。比如,建筑师需要计算建筑物的面积和体积,确定每个部分的材料用量等,这些都需要用到除法。
3、在生活中的运用:在生活中,除法也有着广泛的应用。比如,我们经常用除法来计算商品的单价,或者用除法来求出一个数的因数等。
4、在解决数学问题中的应用:除法在解决数学问题中也有着重要的应用。比如,在求解方程时,我们需要用到除法;在求解组合数时,我们也需要用到除法。
我记得的数学知识点全是那些印象深刻的口诀。
比如奇变偶不变,符号看象限、初中学的勾股定理、高中学的平行条件。
最饶人的是逻辑判断:全部、有且只有、不全是、大部分、包含于等等,秉持着不绕死你我就不叫逻辑的难度给了我很深的印象。
一、基本运算方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会用这样的方法,通过对条件和结论的分析,构造元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的设,然后,从这个设出发,经过正确的推理,导致矛盾,从而否定相反的设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
数学来源于生活,生活当中有许多事情离不开数学,因此我们要挖掘让孩子感到亲切的生活中的数学材料,2022 中考数学知识点归纳有哪些你知道吗? 一起来看看2022中考数学知识点归纳,欢迎查阅!
中考数学知识点归纳
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
知识点7:圆的基本性质
1、半圆或直径所对的圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1、直线与圆有唯一公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3。弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、垂直于半径的直线是圆的切线。
8、圆的切线垂直于过切点的半径。
初三数学中考知识点
(1)必然是指一定能发生的,或者说发生的可能性是100%;
(2)不可能是指一定不能发生的;
(3)随机是指在一定条件下,可能发生也可能不发生的;
(4)随机的可能性
一般地,随机发生的可能性是有大小的,不同的随机发生的可能性的大小有可能不同。
(5)概率
一般地,在大量重复试验中,如果A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做A的概率,记为P(A)=P.
(6)可能性与概率的关系
发生的可能性越大,它的概率越接近于1,反之发生的可能性越小,则它的概率越接近0.
中考数学 复习 方法
1.回归课本,基础知识掌握牢固
结合考纲考点,取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。
2.适当练题
要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的 热点 ,要多做,但不要做太难的题,以会为主。
同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。
3.掌握重难点
初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。
在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。
4.错题重做
冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的`问题。
5.考试时需要掌握一些技巧。
当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
2022中考数学知识点归纳相关 文章 :
★ 2022中考数学备考四大方法
★ 2022中考快速提分方法
★ 2022最新数学期末复习范文5篇
★ 2022年秋九年级数学教学
★ 2022期中考试学习总结十篇
★ 2022期中考试学习总结最新版十篇
★ 2022初中数学教学工作模板
★ 2016年中考历史知识点总结
★ 数学教学工作总结2022精选10篇
六年级上册数学圆的知识点,太神奇啦!
一、圆,原来是无数小点和多边形的魔法组合
有没有想过,圆其实是由无数个超级微小的点构成的正多边形?你知道吗,当多边形的边数越来越多,它的形状、周长和面积就会越来越接近完美的圆!感觉几何世界就像是一个充满无限可能的魔法世界!
二、圆心和半径:圆的灵魂伴侣
圆在平面上展现的,其实是一群到定点距离固定等于某长的点。那个定点就是我们说的圆心啦!而连接圆心和圆上任意一点的线段,就是半径啦!用字母r表示,它决定了圆的大小哦!
三、等圆与对称:数学中的美学
在数学世界里,完全重合的两个圆被称为等圆。等圆的特点是拥有无数条对称轴!每当我看到这种对称美,都会惊叹数学真是太神奇了!看似简单的圆形,其实隐藏着无尽的美学与哲学哦!
四、周长与直径:测量与魔法比例
谈到圆的属性,怎能不提它的周长和直径呢?周长就是圆的边界长度,而直径则是穿过圆心、连接圆上两点的线段。它们之间有个超神奇的关系:直径是周长的1/π倍!每次探索这种数学关系,都能感受到数学无尽的魅力!