蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.
丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.
在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“ 9 ”的位置。这是由于秒针在“ 9 ”位置处受到重力矩的阻碍作用最大。
2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故。
3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光。
4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好。
5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干。
6、走样的镜子,人距镜越远越走样。因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样。
7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出, 只从喷口喷出 . 这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。
8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。
9、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多。这是因为吊扇转动时空气对吊扇叶片有向上的反作用力。转速越大,此反作用力越大。
10、电炉“燃烧”是电能转化为内能,不需要氧气,氧气只能使电炉丝氧化而缩短其使用寿命。
11、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落
12拿一张纸条,两手用力抻,纸条被撕断的位置总也不是中间,而是手指旁
1.在学校下课人头潺动的楼梯里,发现那些逆流而上,或者逆流而下的人不是喜欢靠近楼梯,就是喜欢贴近墙壁逆旁人而行!我对这一现象规律的解释是:靠近楼梯或墙壁可以最大限度的降低旁边逆向而行的人对自己前行的阻碍,最快的达到目的地.
2.我以前对"石头,剪刀,布"的游戏做过初步的研究,即双方出同样的手形(如石头或剪刀或布)时,如果那两个人智力没有缺陷的话,他们在第二次应该都会出布(设他们第一次出的都是石头).可是据我观察和粗略统计很多人(当然大多数是小孩在玩这游戏)并不会出石头,他们有近1/2出的还是石头,改成剪刀和布的都只占1/4.这个现象很有趣,他说明人们(小孩)在第二次出手时,一半人出于"惯性"会继续出上一次的手形,而另一半人改变手形的人,并不是全部都该成出布,这说明他们并没有经过理性的思维就做出了随意的决定.我想原因可能是时间不够或者人类的"惰性".
昨晚闲来无事,打开TV,无意中看到湖南卫视的一套关于减肥的节目里,做了一个"石头,剪刀,布"的游戏.游戏的双方是两女孩,一轮定胜负.第一次,两个女孩都出了"石头",第二次,另一个女孩变出了"剪刀"--她输了!这个现象让我马上又发现了一条以前忽略掉的规律,即游戏的双方第一次很有可能出石头.事实上据我观察也的确是这样(不知大家有没有注意到).我对这一现象的解释是:出"石头"可以防御自身和威慑对方的作用,是一种兼具攻防的最佳策略(想对于出剪刀和布).这是人类和动物的本能反应(如鲨鱼攻击猎物时会紧闭双眼).
现象一:干燥的天气时,早上起来用梳子梳头发,头发会随着梳子飘起来。
现象二:晚上睡觉脱毛衣时,会听到“噼噼”的声音,有时还会伴有火花出现。
现象三:用塑料尺子或笔套,在头皮上反复摩擦几下后,靠近碎纸屑,纸屑被塑料尺“吸”住了。
现象四:把泡沫用手捏散后,手上沾上的小泡沫颗粒,怎么甩也甩不掉。
细心的你还有没有观察到这样的情景:
情景一:吊扇的下表面沾有很多灰尘。吊扇的下表面按道理讲不会有灰尘落上去,但为什么会那么脏呢?
情景二:穿上化纤的衣服,特别吸灰,特别容易变脏。
情景三:电视、电脑显示器,用久了面上都会有一层灰尘。关闭电视的瞬间,你如果把手背靠近电视屏幕,你会发现手背的汗毛都会一根根地竖起来。
其实,这些都属于电现象。用梳子梳头发,脱毛衣时,因为摩擦,物体就带上了电。像这样用摩擦的方法使物体带电的现象,我们叫摩擦起电。物体带上电荷后,如果这种电荷不流动,被称为“静电”。比如电视机的屏幕上带的就是静电。而带电体具有吸引轻上物体的性质。
电扇在转动过程中扇叶和空气摩擦带电,吸引空气中灰尘,所以即使吊扇的下表面依然会很脏。
我们也可能会发现,马路上送油的油罐车后面都有一根长长的“尾巴”拖在地上,这条尾巴其实是一根粗粗的铁链子。这是因为油在运输的过程中,不可避免地会和油罐壁摩擦从而带上电,这些电如果不及时导走,很容易将油罐中的油点燃而引发事故。当用一根铁链将油罐和大地连接起来后,摩擦产生的电荷立即被导向了大地,从而保障了油罐车的安全。所以在油罐车的使用中都有一条这样严格的规定:铁链不能随便缠绕在大梁车架上,必须放在地面上。
在一些电学实验室里都铺有地毯,在这些地毯内部都有很细的金属丝。这些金属丝能把地毯与人行走时由于摩擦产生的静电及时导走,以免静**响实验结果,甚至破坏实验设备。
当然静电对我们的生活有用的方面也很多。例如:
静电集尘:是指用电气的方法去除气体中浮游的微小尘埃,集尘电极接地,放电电极上施加直流电压并形成电晕放电。含尘气体由集尘电极下方进入放电区,粉尘会带上负极性电荷。带负电的尘埃在电场作用下被集尘电极吸附,由此可去除气体中的粉尘
戴着眼镜,从温度较冷的室外到温暖的室内,眼镜商会蒙上白雾,是气体的液化现象。
(2)水烧开了,壶盖会被顶起来,是气体对壶盖做功。
(3)坐在快速行驶的车上,在转弯的时候,会感觉向外甩,这是离心现象。
(4)长期堆煤的墙角会发黑,这是固体分子的扩散现象。
(5)钻木可以生火,这是做功改变内能。
(6)靠在暖气旁边会感到暖和,这是热传递。
(7)指甲剪、剪刀、镊子的工作原理,是杠杆。
(8)坐海盗船,有失重现象。
(9)白炽灯永久了灯泡壁上会有一层黑色,是钨丝的升华。
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少
1.请问几分钟时,盒内为半满状态?
有一个魔术盒子,里面装有鸡蛋,魔法一施展,每分钟鸡蛋的数目就增加一倍,10分钟后,盒内盛满了鸡蛋,请问几分钟时,盒内为半满状态?
2.请问最少要拿出几只袜子
抽屉中有十只黑袜子和十只白袜子,若你在黑暗中开抽屉,伸手拿袜子;请问最少要拿出几只袜子,才能确定拿到了一双?
3.它何时才能爬出枯井?
一只猴子陷落在一口三十尺深的枯井中,如果它每天能够向上爬三尺,再向下滑一尺,以这种速度,它何时才能爬出枯井?
4.最高要化费多少分钟?
设三只猫能在三分钟内杀死三鼠,请问一百只猫杀死一百只老鼠,最高要化费多少分钟?
5.他们谁最大?谁最小?
扎扎比菲菲大,但比胡安小.菲菲比乔乔和马修大。马修比卡罗斯和乔乔小。胡安比菲菲和马修大,但比卡罗斯小。
他们谁最大?谁最小?
6.请用+、-、×、÷、( )等运算符号
1.请用+、-、×、÷、( )等运算符号把五个3连接起来,组成算式,使它们的得数分别是0、1、2、3、4、5、6、7、8、9、10。
2.请你在四个5之间添上运算符号,使运算结果分别等于0、1、2、3、4、5、6、7。
3.下面的算式只写了数字,忘记写运算符号,请你选用+、-、×、÷、( )、[ ]这几种符号填进算式之中,使等式成立。
1 2 3=1
1 2 3 4=1
1 2 3 4 5=1
1 2 3 4 5 6=1
1 2 3 4 5 6 7=1
1 2 3 4 5 6 7 8=1
1 2 3 4 5 6 7 8 9=1
7.这只狗共奔跑了多少千米路?
甲和乙从东西两地同时出发,相对而行,两地相距10千米。甲每小时走3千米,乙每小时走2千米,几小时两人相遇?如果甲带了一只狗,和甲同时出发,狗以每小时5千米的速度向乙奔去,遇到乙后即回头向甲奔去;遇到甲又回头向乙奔去,直到甲乙两人相遇时狗才停住。问这只狗共奔跑了多少千米路?
8.下面算式里“华杯”代表的两位数是多少
华罗庚是1910年出生的,下面算式里“华杯”代表的两位数是多少?
1910
+ 华杯
9.场
有这幺一个场,跑道上A马一分钟可跑2圈,B马能跑3圈,C马则跑4圈。3匹马是同时从起跑线上出发的,请问几分钟后3匹马又相遇在起跑线上?
10.装苹果
有1000个苹果,分装10个箱子,使得任何整数个苹果(当你需要任何个数时)都可以整箱进行组合,怎样分装?
11.年龄
某一天有一个人进了一家小餐馆,点了一份简餐,吃着吃着就跟老板聊了起来。老板说他有三个小孩,于是客人问他:「你的小孩几岁了?」老板:「让你猜好了!他们三个人的年龄乘起来等于72」客人想一想便说:「这样好象不够吧!」老板:「好吧!我再告诉你,你出去看一下我们这儿的门牌号码,就可以看到他们三个年龄的总合」客人出去看了一下是14,回来还是摇摇头回答:「还是不够呢!」老板微笑着说:「我最小的孩子喜欢吃那种巨蛋面包。」请问三个小孩的年龄各是多少?
12.牌
阿拉丙回到阿拉伯,路上经过星期天的日市集,见一处人潮聚集的地方,于是便停下来看看到底是什幺好玩的事?原来是一位卖艺的姑娘和她父亲在表演,还会不时穿插一些猜牌的游戏,第一个猜出来的人还可以得到神灯一个呢!这次,可爱的姑娘出了一题,要依据下列提示猜出三张牌的正确顺序:1. 黑桃的左边有一张方块;2. 老K的右边有一张8;3. 红心的左边有一张10;4. 黑桃的左边有一张红心 你能帮助阿拉丙获得他最需要的神灯吗?顺便告诉你,卖艺姑娘出的题目非常简单,可能你几秒钟就答出来也说不定!
13.去别墅
都已经把一家子都带到别墅去了,"鲍勃说道,"那儿多好,晚上非常安静,没有汽车喇叭声。""但你那儿警察照常上班,"雷恩评论说,"难道你那里没有警察?""我们不需要警察!"鲍勃笑道,"倒是有一个出现在我们驾车中的难题值得你想。情况是怎样的:头15英里我们平均时速40英里。接着大约在九分之几的路上,我们开得快一些。而在剩下的七分之一路程上,我们一直开得很快。全程的平均车速正好是每小时56英里。" "你说的'九分之几'是什幺意思?"雷恩问。"这里的'几'是精确有整数,"鲍勃回答道,"而后面两段路程上的车速,也都是每小时整数英里。"鲍勃自然不会带着一家子人用疯狂的速度去驾驶,尽管也可能那段路上刚好没有警察! 试问,在最后七分之一的旅途中,鲍勃他们的平均车速是多少?
14.过桥
有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下: a 2 分,b 3 分,c 8 分, d 10分。
走的快的人要等走的慢的人,请问如何的走法才能在21分内让所有的人都过桥?
15.火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?
16.周薪
"嗨!约翰尼斯,"星期天乔在街上遇到一个年轻人向他喊道,"好久不见,我听说你开始工作啦!" ,"几个星期了,"约翰尼斯回答道,"这是一份计件工作,我干得挺好的。第一星期我得了四十多美元,而且后来每个星期都比前一个星期多赚99美分。""这真是巧事!"乔笑了笑并继续说,"愿你一如继往都能这样!""我估计用不了多久我一个星期便能赚到60美元,"年轻人告诉乔,"自从开始工作到现在,我已经赚了整整407美元。这的确不坏!"试问,约翰尼斯第一个星期赚了多少
17.两个圆筒面积相等,哪个容积大
如右图,有一矩形铁片,长50cm、宽30cm,将铁片以短边为母线可卷成圆筒(一),以长边为母线可卷成圆筒(二)。如果在它们下面都加上一个底面,问这两个圆筒哪一个容积较大?
解答:这个问题的答案并不一目了然。因为圆筒(一)底面大但矮,而圆筒(二)的底面小却高,两者各有优势。所以究竟谁的容积大还得经计算才能确定。
已知圆筒(一)的高为30cm,底面周长为50cm,则其底面半径为
的容积为V(一)=πR2?6?130=π
已知圆筒(二)的高为50cm,底面周长为30cm,则其底面半径为 ∴圆筒(二)的容积为V(二)=πr2?6?150=π( )2×50= ∴V(一)>V(二) 即圆筒(一)的容积大于圆筒(二)的积。
更高挑战 由上面的比较结果,可以得出这样一个结论:如果两个圆筒的侧面积相等,则矮而粗的圆筒的容积一定大于高而细的圆筒的容积。如果你想接受更高一级的挑战,那么请看下面的证明:
设矩形面积为S,其一边长为a,另一边长为b。(设a>b)则S=ab。
若以a为底面周长,则圆筒高为b,这时圆筒容积V(一)=
若以b为底面周长,则圆筒高为a,这时圆筒容积为V(二)= ∵a>b,∴V(一)>V(二)。
即在侧面积相等情况下,底面越大的圆筒的容积越大。
18.能解“哥德巴赫猜想”
大洋网讯 据新闻晨报报道,前天上午,一名自称曾首创“模糊数学论”的老者,致电本报热线,说他已经解开了著名的“哥德巴赫猜想”。
老者名叫隋新明,66岁,来自新疆,当时住在交通路边的一个小旅馆中。将记者迎进阴暗的统铺后,老者并不急着介绍他的论证方法,却先捧出一大堆各式“名人录”寄给他的邀请信,说明他的研究已得到了全国不少机构的认可。在记者多次引导下,老者才勉强将话题移到了主题上。
“我虽然只有中学学历,但后来考上了大学。‘’那几年,别人胡搅我可没闲着,自学了明朝永乐年间的《增删算法统宗卷》,从此对数学入了迷。”“18年报上发表了陈景润专研‘哥德巴赫猜想’的文章,我一看,他的研究只能到‘1+2’的程度,方法不对。我当年就开创了‘模糊数学论’,用新理论很快就完成了‘1+1’的论证,把‘哥德巴赫猜想’给攻克了。”
一番云遮雾罩的历史介绍后,老者总算摸出了“手稿”。出乎记者意料的是,仅仅一张16开的白纸,就囊括了老者全部的理论精髓,而且其间几乎没有深奥的高等数学,连文科出身的记者都能读懂。总结起来,老者的解题思路是:用自己的描述替换了“哥德巴赫猜想”的原始描述,再用他自创的“模糊数学论”,将经过改动的描述求证到符合“哥德巴赫猜想”的结果。
“你的描述肯定符合‘哥德巴赫猜想’吗?”记者有些不解。
访没能继续,因为在老者的床榻上,记者意外看到了《数学学报》给老者的退稿信。上面写的是:您的文章《模糊数学论、“哥德巴赫猜想”、“1+1”定理》中,实际上并没有给出任一猜想的证明……
19.棋盘中的正方形
题目:
构成棋盘的8行和8列黑白两色方格
可被组合成不同大小的正方形。
这些正方形的大小从8×8到1×1。
问:一个棋盘上共能找出多少个不同大小的正方形?
答案:
共有1个8×8的正方形;4个7×7的正方形;9个6×6的正方形;16个5×5的正方形;25个4×4的正方形;36个3×3的正方形;49个2×2的正方形;64个1×1的正方形,总计204个正方形。
20.蜜蜂用数学忙些什么
蜜蜂们……依靠某种几何学上的预见……知道六边形大于正方形和三角形,可以用同样的材料储存更多的蜜。
--亚历山大的帕帕斯
蜜蜂没有学过有关的几何知识,但它们所建筑的蜂房结构却符合了极大极小的数学原则。
对于正方形、正三角形和正六边形来说,如果面积都相等,那么正六边形的周长最小。这意味着蜜蜂选择建筑六角柱巢室,比建正方形或正三角形为底的棱柱巢室,可用较少的蜂蜡和做较少的工作围出尽可能大的空间,从而储存更多的蜜。
现在我们来证明:面积一定的正三角形、正方形和正六边形中,以正六边形的周长为最小。
证明:设给定面积为S。面积为S的正三角形、正方形、正六边形的边长分别为a3、a4、a6。则
正三角形周长
正方形周长C4=4 ; 正六边形周长
21.牌中的数学游戏
一、巧排顺序
将1—K共13张牌,表面上看顺序已乱(实际上已按一定顺序排好),将其第1张放到第13张后面,取出第2张,再将手中的牌的第1张放到最后,取出第2张,如此反复进行,直到手中的牌全部取出为止,最后向观众展示的顺序正好是1,2,3,……,10,J,Q,K.
请你试试看!
牌的顺序为:7,1,Q,2,8,3,J,4,9,5,K,6,10.
你知道这是怎么排出的吗?
这是“逆向思维”的结果,将按顺序1,2,3,4,5,6,7,8,9,10,J,Q,K排好的牌按开始的操作过程反向做一遍即可.
司马光砸缸的故事你早已听说过吧!孩子掉入水缸,常人一般考虑是让孩子离开水,而司马光砸缸是让水离开孩子,这就是逆向思维,巧排牌的顺序也是逆向思维。在你的学习、生活中离不开逆向思维,愿你早日有意识的这样思维,变得更聪明。
二、妙算猜牌
[玩法]
1.将54张牌洗乱;
2.将54张牌(正面朝上),一张一张地顺序数出30张,翻面(正面朝下)放在桌上,表演者在数30张牌时,牢记第9张牌的花色与点数。
3.从手中的24张牌中,请观众任取一张,若为10,J,Q,K之一,算为10点,并且正面朝上作为第一列放在一旁;若牌的点数a1小于10(大小王的点数为0),将这张牌正面朝上放在一旁,并且从手中任取10—a1张牌正面朝下,作为第一列放在这张牌下面,再请观众从手中的牌中任取一张,按上法组成第2列;最后再请观众从手中任取一张牌,按上法组成第3列,若手中的牌不够,从桌上已放好的30张补足,但是必须从上到下地取牌。
4.将每列的第一张牌的点数a1,a2,a3加起来,得a=a1+a2+a3;
5.表演者从手中已剩下的牌数起,数完后再从放在桌上30张牌中的第一张开始接着数去(如果手中已无剩牌,则从桌上剩下的第一张牌数起),一直数到第a张牌,并准确的猜出这张牌的点数与花色(即开始数30张牌时记的第9张的花色与点数)。
[原理]
三列中牌的总数:
A=3+(10- a1)+(10-a2)+(10-a3)
=33-(a1+a2+a3)
手中剩的牌数:
B=24-A.
∵B+9=24-A+9=33-[33-(a1+a2+a3)]
=33-33+(a1+a2+a3)
=a,
∴从手中剩下的牌数起,这时的第a张牌恰好为原来30张牌中的第9张牌。
22.抽屉原理与电脑
抽屉原理与电脑
“电脑”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。
其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。
抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果。这是因为如果每一个抽屉里最多放有一个苹果,那么两个抽屉里最多只放有两个苹果。运用同样的推理可以得到:
原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。
如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×10的9次方=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!
在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的抽屉数为60×360×12=259200。
所谓“电脑”不过是把人为编好的语句象中药柜那样事先分别一一存放在各自的柜子里,谁要,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。
23.鸡兔问题
另一类属于二元一次方程组的有简捷解法的古老问题是“ 鸡兔问题”,它起源于我国古代的一本数学书《孙子算经》(作者孙子的生平不详,大约是公元4世纪的人,不是《孙子兵法》的作者孙武)。《孙子算经》卷下第三十一题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?该书给出了解法,最后的答案是:雉二十三,兔一十二”这里的“雉”俗称“野鸡”,这类题目在我国通常称为“鸡兔问题”,传到日本后,典型的题目变成了“龟鹤同笼”,因此他们对这一类型的题目通称为“龟鹤问题”。
鸡兔问题在我国民间流传很广,在我国的农村或牧区,田地地头或人们休息时,有时会听到有些老年人向青少年提出这样的问题:“鸡免同笼三十九,一百条腿地上走,有多少只鸡?多少只兔?”这种题的正规解法是设鸡为 只,兔为 只,列出一元一次方程组
解此二元一次方程组就可以得到答案,应该说解这样的题并不困难。但是,由于它是在田边地头提出来的问题,一般是不用纸笔进行列方程解方程一类的计算(顺便补充一句:前面说的“老哥买鳖”也属于田边地头提出来的问题),通常是用口算加心算(民间叫做“口碾账”)来求答案的,有时往往用的是简捷巧妙的算法:以“鸡免同笼三十九,一百条脚地上走”为例,有一种口算加心算的推理过程是这样的:如果生只兔子提起前面两条腿,那么每只鸡和兔子都只有两条腿站在地上,39只鸡和兔在这时应该是78条腿站在地上,比先前的100条腿少了22条,这些腿是兔子们提起来的。由于每只兔子提起来两条腿,现在共提起来22条腿,所以知道兔子一定是11只,39只鸡和兔中有11只是兔子,这说明其中的鸡一定是28只。
还有其他一些简捷解法,例如若把鸡当成3有4条腿的话,39只鸡和兔此时就会有156条腿,比100条腿多出56条腿,这时因为每只鸡多算了两条腿的缘故。每只鸡多算两条腿就多出了56条腿,可见鸡是28只,鸡和兔一共是39只,鸡是28只,兔应当是11只。由于是心算,数字小一些算起来方便些,出错的机会也少些,所以虽然两种算法道理相仿,但后一种解法略比前者繁些。
作为练习,我们可以用上述方法计算《孙子算经》中的那个已经有一千五百多年历史的趣题,算完后请自己核对答案。
第一届华罗庚少年数学邀请赛时,一位主试委员将鸡免问题改成了一则有趣题,颇有意思,写在下面供参考。
例2.7 松鼠妈妈松子,晴天每天可以20个,雨天每天只能12个,它一连共了112个松了,平均每天14个,问这几天当中有几天有雨?
解1 松鼠妈妈共用了
112÷14=8(天)
如果8天都是晴天,就能到松子
20×8=160(个),
一个雨天比一个晴天少松子
20-12=8(个),
现在共少了
160-112=48(个)
因此雨天有
48÷8=6(天)
解2 松鼠妈妈共用了8天松子,如果8天都是雨天,只能到松子
12×8=96(个),
一个晴天比一个雨天要多松子
20-12=8(个),
现在共多了
112-96=16(个)
因此晴天有
16÷8=2(天)
雨天有
8-2=6(天)
评说 这里用的就是前面所说的“鸡免问题”的那两个简捷解法,对于参赛的小学生来说,不可能将列方程作为考试要求,因此也不会用列方程解方程的方法写标准答案。
以上问题都是关于一些特殊情况下的二元一次联立方程的简捷解法,我们在前面已经说过,列方程解方程是数学的基本功,是必须牢牢掌握的,简捷解法必须建立在有牢固的基本功的基础上。
一次联立方程在数学中称为“线性方程组”,它的示知数可以是2个、3个、4个或很多个,但每个方程都只能是一次方程,在我国,二千年前成书的《九章算术》和公元263年由三国时魏国人、我国杰出数学家刘徽对《九章算术》所作的注释中,系统地阐述了解这类方程组的方法,称为“方程术”(兼用“正负术”),这就是今天的线性代数学中用矩阵的初等变换将增广矩阵化为阶梯形矩阵的方法,过了一千几百年,在19世纪初,杰出的德国数学家高斯也发现了这一方法,从那以后一直到今天,世界各国(包括我国)的书上都称这方法为“高斯消元法”,这其实“高斯消元法”是中国古法(有兴趣的读者请参看1985年第8期《数学通报》上拙著《线性代数学简史》与1992年第1期《教材通讯》上拙著《高斯消元法是中国古法》)。
1. 有趣的数学作文
有趣的数学我觉得,在日常生活中,数学是在有趣不过的了。
比如一道有趣的应用题、一道有趣的算式、一个有意思的解法……这个月,我亲眼看到了数学的有趣。记得这个月的某一天,数学老师王老师在课堂上给我们讲了探索与发现(一)——有趣的算式。
在这节课中我们连闯4关,并且全部通过。第一关:奇妙的宝塔,里面就有一些有趣的算式:1*1=1 11*11=121 111*111=12321 1111*1111=? 11111*11111=?我刚开始想:举例的算式答案都是重1开始数一次多加一个结尾倒着数,答案应该是:1234321,123454321。
第二关:奇怪的142857。第三关:神奇的9。
第四关:寻找神秘的数。我都是按照同样的思路来计算,就这样,发现了数学的有趣。
这样的例子还有很多很多,因为数学是非常的有趣,所以,我会不断寻找数学的有趣,因为只有通过寻找数学的有趣,才能激发兴趣,只有坚持才能成功。
2. 数学趣味作文你知道数字还有很多趣味吗?在一次数字家族的party上,大家聚在一起就开始相互调侃。
我觉得,我们家就是一艘小船,爸爸是船,妈妈是帆,船上站着的是我,我们行驶在茫茫的大海上,那天空是多么的晴朗,那太阳是多么闪亮。怎么样?数字的世界就是这么有趣。
3. 数学的乐趣作文数学,一个奇妙的字眼,其中蕴含了无限的哲理与数不尽的欢乐。
前几日,我碰到了一道有趣而充满生活情趣的数学题:星期天,明明来看爷爷做积木。只见爷爷拿出一个大正方体,先熟练地拿起刷子给这个大正方体涂满红色,接着又把这个正方体切成27块,最后又把这些小正方体放在阳台上晾晒。趁着这个空闲,爷爷考考明明,你知道三面涂红色的小正方体有几个?两面涂红色的小正方体有几个?一面涂红色的小正方体有几个?全没涂上红色的小正方体有几个?明明想了想,很快就得出了答案,你知道明明的答案吗?
我看这题目,刷刷刷三两下就把题目做了出来,可一对答案,全错了,怎么回事?哦,我把它看成平面图形来计算了,难怪会错。可是,立体图形该如何计算呢?没办法,我只好找来一块正方体橡皮,四周涂成红色,用小刀将其按题目的条件小心地切开。我数了数,发现三面涂色的有8个,两面涂色的有12个,一面涂色的有6个,全没涂色的有1个。我仔细地数了两遍,总觉得其中有着隐隐的规律。我动手拼了拼,再一看,发现三面涂色的是:正方体的顶点数;两面涂色的是:[(一条棱上的个数-2)*12]个;一面涂色的是:[(一条棱上的个数-2)的平方*6]个,全没涂色的是:(总格数-以上的数)个,这难道是巧合吗?我急忙到文具店买了几块正方体橡皮,打算再做两次实验证明一下,我的推测是否正确。
买回橡皮后,我分别将其涂上蓝色和**,以便区分,再将它们切成4*4*4和5*5*5,切好后,我数了一下,发现它们三面涂色的都是8个;两面涂色的:蓝色为24个,即(4-2)*12=24、**为36个,即(5-2)*12=36;一面涂色的:蓝色为24,即(4-2)*(4-2)*6=24、**为54个,即(5-2)*(5-2)*6=54;全没涂色的:蓝色为8个,即64-8-24-24=8、**为27个,即125-8-36-54=27。这几个答案与我自己刚才的推算完全一致,我又用这个方法推算了另外几题,都与答案一致,我高兴地一蹦三尺高!
通过这道题,我懂得了数学不仅仅需要逻辑推理,还需要动手实践,这样才能把题目做得更好,更完善!
4. 作文 我们生活在有趣的数学中[作文 我们生活在有趣的数学中]从小妈妈就根据我的学习情况辅导我数学,使得我爱学习更爱数学,长大了更感觉数学在生活中用处很广,也感觉到数学很有趣,作文 我们生活在有趣的数学中。
每当做数学题遇到困难时,我就寻求最好的解题方法。冷静思考、分析题目找到解题方法。
就像一个勇士打倒了一个又一个敌人,我要占领数学这座高峰。 有一天,我又像往常一样拿起奥林匹克数学书看了起来,小学四年级作文《作文 我们生活在有趣的数学中》。
有一题看着很简单但很有趣。内容是:小明参加猜谜语比赛,共20个题,规定猜对一个得5分,猜错一个倒扣3分,不猜按猜错算,小明共得60分,问:他猜对了几个题?我先设他全部猜对是20题乘以5分=100分,可是他只得60分,少得40分。
题意是猜错和不猜倒扣3分,意思是5分+3分=8分(一题要扣8分),那么他少得40分,一题就是8分,那么就用40分除以8分=5题,这5题就是他猜错的,最后一步用20题-5题=15题,也就是他猜对的15题。做完这题我舒了一口气,总结了一下:做题就要根据题意一点点分析,冷静思考。
我打算以后还要多做题,才能冲刺并占领数学高峰。 江苏省徐州市云兴小学 四年级二班:董昊鑫 指导老师:卓娅。
1、同一天过生日的概率
设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
2、袜子配对
关于多少只袜子能配成对的问题,答案并非两只。因为在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。
如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。
当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。
3、掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
4、炒菜时间(数学家谷超豪的生活数学)
拿最简单的炒菜来说,我们通常先把碗洗好,然后把炒好的菜盛到碗里去。可扎上围裙的谷超豪计算了一下,得出一个“结论”:根据统筹的方法,应该先炒菜,在煮菜的时间里去洗碗,这样洗碗的时间就省下来啦。
5、出院时间(数学家谷超豪的生活数学)
一次住院,他一项肝功能指数回落得特别慢。连续数周抽血检查后,谷先生一本正经地对护士**说:“能不能把下次例检换到10天之后?因为根据前几次的检验报告我作了预测,再有10天,我的肝功能指标就能回落到正常了。而按原来的抽血周期,我还得等上两个礼拜才能出院呢。”一句话把医院上下给逗乐了,果然,这位病号少抽一次血,提前4天,圆满出院。
参考资料:
人民网《生活处处有数学 谷超豪院士人生的加减乘除》
云也会掉下来
主要有两种形式:冷凝后以降雨或降雪、冰雹等形式落下来;在特定的时间和地点,靠近地面的相对湿度达到 100%,气象学上的说法是成云高度很低,在地面形成云,只不过这时候我们把它叫做雾。