当前位置:灰灰分享 > 慢生活 > 数学小论文--发现生活中的现象与数学知识的联系

数学小论文--发现生活中的现象与数学知识的联系

  • 发布:2024-10-05 12:25:15
  • 24次

花朵为什么是圆的?

数学小论文--发现生活中的现象与数学知识的联系

因为圆的面积是所有几何图形中最大的,所以光合作用强,有助于花朵的生长.因此花朵是圆的.

茶壶盖为什么是圆的?

因为圆的直径,半径都相等,不容易掉下去.而且区别其他几何图形,同样面积,圆形,甚至椭圆形的体积最大,容量最大.方的话,可能掉到杯子里

方的容易把角碰掉,而且不是很安全.圆的符合大众的审美观,大家喜欢圆的,使用也方便。其它的盖子也有,比较少.设计成圆形,无论从哪个角度放下去都正好合适.

动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

五年级数学小论文,生活中的数学。

数学小论文

今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。

想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!

想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!

想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。

我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

急求一篇初中论文 生活中的数学 三千字左右

只要用心写啊

我也写过,给你参考一下:

第一先写一些自己在生活中遇到的困难,

然后再写自己是怎么样探究的、怎么样解决问题的

然后在写一个简单的结尾就好了

我反正是这样写的

我也是六年级

我写的是简算

例如(这是我写的):

简便方法计算

每一次考试,基本上都要考到计算,同学们肯定都厌烦计算,特别是四则混合运算,再加上分数、小数,真是烦上加烦。但是,考试终究是要考到计算,那怎样让计算不那么烦,不容易出错呢?那就要用上简便计算的定律了。

常见的简便计算的定律有:加法交换律a+b=b+a,加法结合律a+b+c=a+(b+c)等定律。

比如说下面一题就是在我们三训上出现的题目:0.88×100.1

如果这道题目列竖式计算的话会很麻烦,也有可能算错。如果要简便计算的话就可以把100.1拆成100+0.1,然后就可以用乘法分配律简便计算了:

0.88×100.1

=0.88×(100+0.1)

=0.88×100+0.88×0.1

=88+0.088

=88.088

这样计算就简便多了,不用再去死算,而且不容易出错。

在计算中,虽然可以用计算公式但是有一些题目还需要一步一步地算,比如说有两组很容易就上当的四则运算:12×48÷12×48和12×48÷(12×48)。第一个看上去可以很快的算出来,其实,这只是一个陷阱,如果非要在第一个上简算,也可以用12和÷12抵消,转化成48×48。而第二个的运算顺序和第一个是相反的,先算括号里的12×48,然后按照运算顺序把前面的12×48算出来,就可以转化成1÷1结果等于1。

计算,看看是挺难的,其实,只要用上一些运算定律,它们就像是魔术师,使计算变的简单了。所以,数学是很奇妙的,只要用心去钻研,去思考,再难的数学题也会被攻破。 祝你学习进步!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

求数学小论文生活中的对称写出生活中的对称

浅谈生活中的数学0、

摘要: 本文通过对生活中的数学问题进行讨论,从日常小事说起,使大家对生活中的数学有一个初步了解,并让我们进一步体味到数学在生活中的重要性。只有我们能够意识到数学存在于现实生活之中,并被广泛应用于现实世界,才能够切实体会到数学的应用价值,当面对实际问题时,才能主动尝试着从数学的角度运用所学知识和方法去寻求解决问题的策略。由于生活中的数学乐趣,才使我们体会到数学中存在着无限的交响乐,存在着优美的诗。

关键词:使用频率、生活、标征量、乐趣

1、

引言:

“卖西红柿……,一元钱三斤。”这一句简单的叫卖,就有数学问题。也就是说,在我们生活的周围有很多的数学问题,这些数学问题、现象贯穿于生活的方方面面,不仅有一般生活中的常识,也有生产实践中的不在意,还有生活中的游戏、乐趣等等。

总的来说,生活中的数学分为四个方面,一是日常生活中的数学;二是生活与数学的关系;三是生活中的数学乐趣;四是数学对生活的影响。通过这四个方面的论述,可以使我们对生活中的数学有一个比较深层次的了解,从而使我们更加注重生活中的数学。

2、

日常生活中的数学

2.1一日生活中伴随着数学

早上一起来,首先是对一天的工作进行一个比较简单的,一天中要干哪些工作,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学。一天的工作结束后,接下来的是对一天的工作进行一个小结,小结是通过一个一个的数算进行的,运算的结果是一个个比较直观的数字。

从以上的例子中可以比较清楚、明显的看出来,一日生活中的每一件事情都伴随着数字问题,也就是说数学问题伴随在生活中的每一件小事情中。

2.2日常生活中数学的使用频率高

社会的发展带来社会生活方式、内容以及节奏的变化,这样的变化与数学有着怎样的关系,统计结果表明,与人民日常生活联系密切的数学信息按出现频率排列,主要包括:数(大数)、百分数、分数、比例、图形及图表、统计、数学术语这几个方面。这些内容所出现的不同领域包括:政治、军事、经济、科技、教育、文化、卫生、体育、生活、金融保险、广告等。比如,在生活中,一个人如果在刷牙时不关水龙头,那么刷一次牙要浪费7杯水,每班按40人计算一天会浪费多少水?全国一天共浪费多少水?这个数一定是一个很大的数,我们在利用大数的同时也增强了节水的意识。

根据统计结果表明,可以得出以下结论:

(1)数学的定量化特征越来越多地表现在人们的日常生活中。大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻及广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的好似定量的,而不是定性的。

(2)图形图表,尤其是各种各样的统计图、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现报刊中。从这些频频出现的直方图、扇形统计图、数据统计表中,我们看到,为了了解信息、看懂报纸,统计的基本知识和方法已必不可少。

(3)与生活相关的报道及广告中的数学内容也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如方位图、直方图、数学术语、公式等。随着上述行业的不断发展,不难预计。在未来的社会中,数学必将与经济和人们的日常生活发生越来越密切的关系。而就今天的日常生活来说,一件工程的预算、生活中日用品的买卖、人与人之间的对话、一天中时间的安排、一个阶段中各种事务的安排、一天中的一个小结、一个阶段中各种事务的处理情况、工作程序等等,数学在其中的使用已是非常广泛,从而可以说明数学的使用频率已相当高。 3、生活与数学的关系

数学与人们的生活有着非常密切的关系。日常生活中人们离不开数学,购物、估计和计算时间、确定位置等都与数学有关。可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具。无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法。特别是随着计算机的普及与发展,这种需要是与日俱增。而且,数学是和语言一样的一种工具,具有国际通用性。可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;我们邹梓人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面。这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要1000条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用。因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影。

3.1生活是以数学做标征量

在一年要结束的时候,商人在谈论中说我这一年的收入是多少多少,与去年相比怎么样;农民也在谈论这一年中收入了多少多少,有几项收入如何如何,收入了多少粮食;工人也在谈论我这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生学习成绩的提供啊则是对一位教师一年来辛苦工作的最好回报;单位也在做这样一个一个的总结。

一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预计、程度等。

综上所述,数学确实是生活中的一个标征量。 3.2数学催促着生活水平的提高

数学推动了数字化社会的发展,推动了科学的纵深发展,它被广泛应用于现实世界的各个领域。无论是我们日常生活的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持。在努力把科技成果转化为生产力的今天,主动寻求新知识的实际背景,主动寻求知识的应用领域,开辟出更广阔的应用空间,从而催促着我们生活水平的提高。

生活中总有一些数学问题推动着人们的大脑和行动。“本世纪中叶我国赶上中等发达国家水平。”这就催促着我们的大脑在想,我们怎样去发展经济才能在本世纪中叶赶上中等发达国家的人均收入,从而人们在不停地思考我国的经济发展道路,一旦有了发展的新思路,人们就要立即行动起来,为我国的经济发展开启一条新道路,从而推动经济的发展,使人们的生活水平不断提高。

另外,在我们进行的各项活动中,要做成一件事情,往往要受到各种主客观条件的限制和制约,一个自然的想法是:如何在现有条件下以最小的代价获得最佳效果。即怎样才能达到“最近、最省时间、最短距离、最佳效益”等优化问题,相应的数学方法就是优化方法。如果优化中的主、客观条件和要实现的目标都可以表现为线性函数,那么对应的优化问题就称为线性规划问题。这类问题虽然简单,但却是各项经济活动中最为常见的,经济、工业、国防、城市规划及交通运输等领域中都有大量的线性规划问题。在我们的日常生活中也总是想法设法以最优的价格来获得最佳产品,以最小的代价获得最高利润,想办法如何使有限的生产资料得到最充分的利用,如何选择出可行的最佳路线,在课堂上以有限的时间获得最佳的课堂效果;等等。

再如:到北京四个人的车票要多少钱?乘坐什么样的交通工具最省钱?买一支牙膏给十元钱应找回多少钱?五点出门六点一刻回来用了多少分钟?等等,这些问题都在推动正人们去思考,应用数学的方法分区思考,推动人们去行动,增强生活观,影响着人们的日常生活,所以,我们要与数学交朋友,数学是我们劳动和学习必不可少的工具,能够帮助我们处理各种数据,进行计算和证明以及推理。 4、生活中的数学乐趣多

现在的生活,数学游戏多多,比如说小朋友在打时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏。如“树上七只猴,地上一只猴,一共几只猴。”等等生活中的例子。这些游戏构成了我们生活中五彩缤纷的画卷。

下面我将再通过几个生活中的实例来说明生活数学的乐趣:(1)在一张纸的中心滴一滴墨水,沿纸的中部将纸对折、压平,然后打开看,位于折痕两侧的墨迹图案有什么特征?肯定是对称的,这里面体现了轴对称的数学知识与乐趣。(2)打“斯诺克”台球,当“主球”与“目标球”之间有障碍时,为了击中目标球,主球应先击打台球桌的边,设法反弹后再击中目标球。如下图所示,

主球A击打桌边的点B处,反弹后再击中目标球C。(根据入射角等于反射角的原理)图中的∠ABD=∠EBC,目标球从A出发经过点B到点C,即相当于从点A′出发直接击打目标球C。这里,就有图形的轴对称变换的原理。(3)有两杯水都是100克,其中一杯放入糖30克,另一杯放入糖25克,哪杯水更甜些?当然是第一杯更甜些。若两杯水分别是40克和45克,第一杯放入30克糖,第二杯放入35克糖,结果哪杯更甜些?需要运用百分数的知识来比较。(4)当你乘车沿一条平坦的路向前行驶时,你前方的那些高大建筑看起来好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,而当你经过它们之后再回头望,那些“沉”下去的建筑又逐渐“冒”了出来。

总之,生活中的数学乐趣多,可以说无处不在。

5、数学对生活的影响是比较大的

数学对生活的影响说明了数学在生活中的地位和作用。衣、食、住、行是社会生活的基础,过去人们追求的是吃饱、穿暖、实现小康水平。随着生活水平的提高,人们追求的目标是均衡的营养、设计新颖的服装、土地的合理利用、舒适的房屋等等。事实上,在日常生活中,就学、就业、住房、医疗、退休、养老等模式,都在发生变化,变得可选择性越来越强,越来越需要减少依赖,增强自主,需要百姓运用自己的头脑分析批判,作出决策。

在众多的选择面前,有人如鱼得水,有人无所适从。无论你是否习惯,是否能够接受,“降水概率”已经赫然于电视和报端。不久的将来,新闻报道中每一条消息旁都会注明“真实概率”;电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟率、火车正点概率、药效概率、广告可靠概率等。总之,世间万物本来如此,我们只是借助于数学帮助恢复其本来面目。生活中如果没有了数学,不能进行定价,我们的买卖就不能进行下去,经济活动也就无法开展;没有了数学,不能进行科学计算,我们的科学研究也就无法进行;没有了数学,不能进行计数,我们基本的农业生产也会变得混乱不堪;没有了数学,就连最起码的日常生活也无法进行下去,因为没有了数学,我们就不可能进行日常生活中的等价交换。

从上所述,数学严重影响着我们的生活,是生活中的重要条件。只要我们善于适当地把数学应用于现实生活解决实际问题,才能更好地体现数学服务于生活。正是由于善于观察生活中的实际问题和勤于思考,牛顿发现了万有引力,欧拉通过数学抽象成功地解决了“哥尼斯堡七桥问题”,又通过“哥尼斯堡七桥问题”创立了图论与线性规划两门学科。只要我们善于观察、勤于思考,现实生活中出现的许多新问题会不断得到解决,生活中的数学语言也才能通过各种途径为各行各业的人传递大量的信息。

6、总结

总上所述,生活中的数学不仅仅是生活中的一种工具,同时也是生活的必需品,而且影响着人们的生活。生活中的数学是人们追求的一个标征量,也是生活中的乐趣。因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它。

生活中的数学论文

对称性在自然界中的存在是一个普遍的现象.99%的现代动物是左右对称祖先的后代;连海葵

这种非左右对称动物的后代,也存在对称性;对称性甚至在左右对称和非左右对称动物分化之前就

已具有… …在植物界,我们有多少次惊异于那些具有完美对称性蕨类、铁树的叶子和娇艳的花朵?

生命里如果没有对称性会是什么样子呢?如果动物只两条腿,要么象人一样令人畏惧;要么不能生

存.如果人不是左右对称,只有一只眼睛、一只耳朵和半个脸… …世界就不再美好了.

人具有独一无二的对称美,所以人们又往往以是否符合“对称性”去审视大自然,并且创造了

许许多多的具有“对称性”美的艺术品:服饰、雕塑和建筑物.

对称性对于人,不仅仅是外在的美,也是健康和生存的需要.如果只有一只眼睛,人的视野不

仅变小、对与目标的距离判断不精确,而且对物体的立体形状的认知会发生扭曲.如果一只耳朵失

聪,对于声源的定位就会不准确:因为当人对声源定位时,大脑需要声音对于听者的方位仰角线索,

也需要到达左右耳间的时间和强度差线索.对于野外生存的动物,失去声源定位的能力,意味着生

命随时会受到威胁.左右手脚需要默契的配合.对于花朵,如果花冠的发育失去对称性,雄蕊就会

失去受粉能力,不能传种接代,物种将绝灭.

生命从最原始的单细胞动物向多细胞后生动物演化,最早拥有了以“对称性”为特征的复杂性:

例如从单倍体生物到二倍体生物.二倍体生物都能进行繁殖,有雌有雄;每个个体都有来自于

父母的染色体和相应的基因,虽然隐性基因并不表现出来.在越来越多基因被克隆出来以后,寻找

控制对称性状的基因,成为寻找新发现的有力线索.一般相信,某些对称性状是有若干对基因所控

制的,也决定某些非对称性状的特化.

在科学研究中,对称性给科学家们提供了无限想象的空间,也是揭示新发现和否定错误观念

的手段.生命科学家不止探讨认识生命活动的本质,而且也探讨存在于生命中的美、为什么这么

人大脑的两个半球,从它们的沟回和细胞排列层次看,非常相似,具有完美的对称性;这种

对称性之于两手、两脚的对称性无异,似乎功能应是一样的.美国科学家斯佩里从1960年代初开始

,对癫间病人实施胼胝体切断手术,把大脑一分为二,发现它们能独立工作,功能并不一样.这一

成果开创了心理学和脑功能定位研究的新纪元,他因此于1981年荣膺诺贝尔医学奖.随着功能核磁

共振、光学成像和PET技术的发展,人类对大脑功能的分化定位的认识有了长足的进步;从功能上

看,左右大脑是完全不对称的.但是在低级中枢,间脑、脑干、小脑和脊髓,在功能和形态上都表

现完美的对称性.

虽然对称性—左右对称或圆形对称的起源至今仍是一个迷,但是循着“对称性”的思路,我们

可以找到许多非常有意义的生命科学课题.为什么雌果蝇能通过翅膀的摩擦产生声音吸引雄果蝇交

配,而雄果蝇刚好在第二个触角有分化的听器官接受声 *** ;反之,雌果蝇没有听器官,而雄果蝇

再如,既然神经元的兴奋特性取决于突触后膜受体通道的特性和神经突触前膜所释放

的递质特性,为什么在形态上,神经系统中兴奋性的突触是非对称的,而抑制性突触是对称性的?

事实上,对称性也存在于分子结构上;有手性对称分子,旋转对称分子.按照这样的思路,发现了

新的信号受体、受体亚基,或许有一天我们会从中得到启示改造蛋白质,进而设计、发明新的药物.

科学,有时是运气,有灵感的闪现,有幸遇上中意的合作伙伴、得心应手的课题,撞上了那

个发现的时机;有时是艺术,你在精雕细刻之中得到了应有的回报;有时是理性使然,你对于文献

和自己已有的知识、技能有纯熟的驾驭;有时是枯燥乏味的重复,在重复中静静等待那激动一刻的

到来.我们在科学生活中可以体念到大自然造化所赐予的、无所不在的对称美,为平常而有时枯燥

的日常工作增添了无穷的乐趣!

生活中的数学论文如下:

在我们的日常生活中,数学无处不在。从早上起来,我们就会碰到各种各样的问题,这些问题都需要数学来解决。

例如,在早餐的时候,我们会需要数学来计算我们需要的食品的比例;在购物的时候,我们需要数学来计算我们所需商品的总价;在我们每天工作的时候,我们会需要数学来计算我们每天完成任务所需的时间。

论文

论文是一个汉语词语,拼音是lùnwén,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。

它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

知识拓展:

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目和作者姓名一定要写在表皮上,不要写里面的补页上。

摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广。

阅读全文阅读全文

猜你喜欢

随便看看