当前位置:灰灰分享 > 慢生活 > 六年级数学小论文怎么写

六年级数学小论文怎么写

  • 发布:2024-10-05 12:26:55
  • 34次

六年级数学小论文写法如下:

六年级数学小论文怎么写

生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正 常生活。可见数学在我们的生活中占有多么重要的地位。

举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金× 利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。

再说科学家们发明的种种东西,气象学家测量的天气情况这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前功尽弃了。

还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果。

数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解 这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料。

使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了 确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算。

五年级数学小论文怎么写

生活中的“奇妙等式”

数学中有许多等式,比如“速度×时间=路程”、“单价×数量=总价”,今天,我要向大家介绍几条数学与我的等式。

生活中,我总结出这一等式:“我+父母=正确数学”。平时,我会经常遇到一些难题,但是,父母的工作十分繁忙,很少有时间陪我,每当我睡下时,他们还没回来,一家人唯一的沟通方法,就是那一本“留言本”。每次留下的题目,父母总会绞尽脑汁地为我解答。父母学习书上的例题,给我解答是最令我感动的。每次看到留言本上,父母给我留下的解题思路,我都会在心中默默地感谢他们。

小时候,父母也为我总结出这一等式:“课本+生活=数学”。那时,父母工作都不是很忙,每次出去买东西,都会带上我。最让我记忆犹新的是我上中班的时候,妈妈带我买菜的一件事。当时,正值秋季,妈妈见路边有些卖苹果的摊子,便和卖苹果的人讨价还价起来,最终,以一元一斤的价钱买了三斤。当时,妈妈转过头来,亲切地问:“赢赢,一元一斤的苹果,三斤多少钱?”我想了想,说:“是,是三块钱。”惹得周围的人直夸我聪明。回家后,妈妈又问我是怎么会的,我笑着说:“我是用1+1+1=3的。”直到现在,妈妈还经常提那件事,教育我说:“数学不光要学课本上的,还要学习生活中的。”

“每晚三题=快乐数学。”这是我小学三年级时所立下的等式。每天晚上做三道思考题不多也不少,只要坚持不懈,一定能积累许多。现在,我依然坚持每天做三道思考题,有时间还能多做一点,两年多了,不知道自己已经做了多少了,也不知道自己写满了多少的本子,这种作业方式,使我受益非浅,让我在多次数学竞赛中获奖,品尝胜利的喜悦。

“勤动脑+勤动手=成功,”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。一般拿到题目,我总要先读懂题目,弄清资料,掌握其中的关系,然后根据关系列出算式,一步步地解答。有时,还可以通过画图的方法,根据已知数量画出线段图,便于理解题目。至于答完之后,再找几道类似的题目,巩固一下,对学习也有好处。

其实,生活中还有许多奇妙的等式,在等着我们去总结,去探索。

五年级数学小论文

五年级数学小论文范文如下:

伟大的数学王国由0—9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。

把—条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。

从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。

一、画图的应用。

1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。

2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。

二、人体的应用。

1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。

2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点。

三、建筑物的应用。

古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔等等。

四、生活上的应用。

1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。

2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。

大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!

数学简介:

数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。 数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。 在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

写一篇关于生活中的数学的小论文

阿姨的数学题

我妈妈开了文具店,今天是星期天,妈妈有事,叫我去看店。一会,来了一位阿姨,她说要考考我,才能告诉我买什么,她说:“李辉买了一枝铅笔和一个练习本,一共花了0.48元。练习本的价钱是铅笔的两倍。铅笔和练习本的单价各是多少钱?” 我想了想:练习本和铅笔一共是三倍,只要用0.48÷3就能求出铅笔的价格,那练习本的价格也能求出来了。我把答案说了出来,阿姨夸我:“能够仔细的分析题目,真不错!”“你这里练习本每本0。6元,作文本每本0。9元,我要买10本,给你8.1元,不用找,你该给我几本练习本 ,几本作文本?”我想了想说:“先设10本全是作文本,需要10×0.9=9元,实际付了8.1元,比设少付了9-8.1=0.9元,实际作文本比练习本多0.9-0.6=0.3元,就可求出练习本是0.9÷0.3=3本,作文本是10-3=7本。”算出来了,阿姨直夸我聪明,我心里美滋滋的,后来阿姨又买来几样文具,结帐时我还沉浸在欢乐之中,结果呢把钱算错了,我没发现,阿姨却对我说:“你呀,一夸你就得意忘形了。把该付的钱的小数点看错了,结果呢我少付15。3元。”“对不起,小数点向左移动了一位,比原来的价格缩小了10倍,相差了9倍,只要15.3÷9=1.7元,由于刚才缩小了10倍,所以要1.7×10=17元。”阿姨又买了几个文具,就走了。

今天,阿姨的数学题我一一攻破了,心想:生活中的数学无处不在,数学博大精深,我要更加努力,争取再上一层楼!

数学小论文--发现生活中的现象与数学知识的联系

切西瓜

炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她

问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。

小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。

只用动动脑筋,世界上没有什么事可以难住你的。

求数学小论文生活中的对称写出生活中的对称

花朵为什么是圆的?

因为圆的面积是所有几何图形中最大的,所以光合作用强,有助于花朵的生长.因此花朵是圆的.

茶壶盖为什么是圆的?

因为圆的直径,半径都相等,不容易掉下去.而且区别其他几何图形,同样面积,圆形,甚至椭圆形的体积最大,容量最大.方的话,可能掉到杯子里

方的容易把角碰掉,而且不是很安全.圆的符合大众的审美观,大家喜欢圆的,使用也方便。其它的盖子也有,比较少.设计成圆形,无论从哪个角度放下去都正好合适.

动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

对称性在自然界中的存在是一个普遍的现象.99%的现代动物是左右对称祖先的后代;连海葵

这种非左右对称动物的后代,也存在对称性;对称性甚至在左右对称和非左右对称动物分化之前就

已具有… …在植物界,我们有多少次惊异于那些具有完美对称性蕨类、铁树的叶子和娇艳的花朵?

生命里如果没有对称性会是什么样子呢?如果动物只两条腿,要么象人一样令人畏惧;要么不能生

存.如果人不是左右对称,只有一只眼睛、一只耳朵和半个脸… …世界就不再美好了.

人具有独一无二的对称美,所以人们又往往以是否符合“对称性”去审视大自然,并且创造了

许许多多的具有“对称性”美的艺术品:服饰、雕塑和建筑物.

对称性对于人,不仅仅是外在的美,也是健康和生存的需要.如果只有一只眼睛,人的视野不

仅变小、对与目标的距离判断不精确,而且对物体的立体形状的认知会发生扭曲.如果一只耳朵失

聪,对于声源的定位就会不准确:因为当人对声源定位时,大脑需要声音对于听者的方位仰角线索,

也需要到达左右耳间的时间和强度差线索.对于野外生存的动物,失去声源定位的能力,意味着生

命随时会受到威胁.左右手脚需要默契的配合.对于花朵,如果花冠的发育失去对称性,雄蕊就会

失去受粉能力,不能传种接代,物种将绝灭.

生命从最原始的单细胞动物向多细胞后生动物演化,最早拥有了以“对称性”为特征的复杂性:

例如从单倍体生物到二倍体生物.二倍体生物都能进行繁殖,有雌有雄;每个个体都有来自于

父母的染色体和相应的基因,虽然隐性基因并不表现出来.在越来越多基因被克隆出来以后,寻找

控制对称性状的基因,成为寻找新发现的有力线索.一般相信,某些对称性状是有若干对基因所控

制的,也决定某些非对称性状的特化.

在科学研究中,对称性给科学家们提供了无限想象的空间,也是揭示新发现和否定错误观念

的手段.生命科学家不止探讨认识生命活动的本质,而且也探讨存在于生命中的美、为什么这么

人大脑的两个半球,从它们的沟回和细胞排列层次看,非常相似,具有完美的对称性;这种

对称性之于两手、两脚的对称性无异,似乎功能应是一样的.美国科学家斯佩里从1960年代初开始

,对癫间病人实施胼胝体切断手术,把大脑一分为二,发现它们能独立工作,功能并不一样.这一

成果开创了心理学和脑功能定位研究的新纪元,他因此于1981年荣膺诺贝尔医学奖.随着功能核磁

共振、光学成像和PET技术的发展,人类对大脑功能的分化定位的认识有了长足的进步;从功能上

看,左右大脑是完全不对称的.但是在低级中枢,间脑、脑干、小脑和脊髓,在功能和形态上都表

现完美的对称性.

虽然对称性—左右对称或圆形对称的起源至今仍是一个迷,但是循着“对称性”的思路,我们

可以找到许多非常有意义的生命科学课题.为什么雌果蝇能通过翅膀的摩擦产生声音吸引雄果蝇交

配,而雄果蝇刚好在第二个触角有分化的听器官接受声 *** ;反之,雌果蝇没有听器官,而雄果蝇

再如,既然神经元的兴奋特性取决于突触后膜受体通道的特性和神经突触前膜所释放

的递质特性,为什么在形态上,神经系统中兴奋性的突触是非对称的,而抑制性突触是对称性的?

事实上,对称性也存在于分子结构上;有手性对称分子,旋转对称分子.按照这样的思路,发现了

新的信号受体、受体亚基,或许有一天我们会从中得到启示改造蛋白质,进而设计、发明新的药物.

科学,有时是运气,有灵感的闪现,有幸遇上中意的合作伙伴、得心应手的课题,撞上了那

个发现的时机;有时是艺术,你在精雕细刻之中得到了应有的回报;有时是理性使然,你对于文献

和自己已有的知识、技能有纯熟的驾驭;有时是枯燥乏味的重复,在重复中静静等待那激动一刻的

到来.我们在科学生活中可以体念到大自然造化所赐予的、无所不在的对称美,为平常而有时枯燥

的日常工作增添了无穷的乐趣!

阅读全文阅读全文

猜你喜欢

随便看看