1、身体计算器
我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。
现在选择你想计算的9的倍数,设这个乘式是7×9。只要弯曲标有数字7的手指,然后数左边剩下的手指数是6,右边剩下的手指数是3,将它们放在一起,得出7×9的答案是63。
2、石块、贝壳计数
原始社会,人类智力低下,当时把石块放进皮袋,或用贝壳串成珠子,用“一一对应”的方法,计算需要计数的物品。
3、结绳计数
就是在长绳上打结记事或计数,这比用石块贝壳方便了许多。
4、掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。这种方法对当事人双方都很公平。因为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。
5、商场购物
商场里说某物品打九折优惠,就是90%原价乘以0.9,原来100块的只卖90块。七五折就是75% 原价100乘以0.75=75块。
一、鱼缸内有10条鱼,死了2条,问鱼缸内还有多少条鱼?
答案:鱼缸一共有10条鱼。
讲解:死鱼也是鱼,在没强调把死鱼拿走的情况下,死鱼的数量依然要算上。
二、一组小朋友玩老鹰捉小鸡,有一位扮演老鹰,一位做母鸡,还有8个做小鸡。请问再来3组,一共有几位小朋友?
答案:一共有30个小朋友。
讲解:一共有4组,一组是老鹰1只+母鸡1只+8只小鸡,等于10个小朋友,一共有40个小朋友。
三、小朋友排队,从左向右数小红排第7,从右向左数小红排第8,这一排队伍一共多少人?
答案:这排队伍一共有14个小朋友。
四、老师说:8个小朋友玩捉迷藏,已抓住4个还剩几个?
答案:还剩下3个。
讲解:8个小朋友捉迷藏,一个做老鹰,就只能是7个做小鸡,抓了4个,就还余下3个。
五、有两杯果汁,宝宝先喝了半杯,妈妈又倒满了,宝宝又喝了半杯,妈妈又倒满了,最后宝宝都喝完了,请问宝宝共喝了几杯?
答案:一共喝了三杯。
讲解:2+0.5+0.5=3杯。
六、草莓和桃子各代表一个数,草莓加桃子等于7,草莓加草莓等于8,草莓和桃子各是几?
答案:草莓是4个,桃子是3个。
讲解:草莓代表一个数字,两个相同的数字之和为8,就可以知道草莓代表了数字4,那么4+3=7,则桃子为3个。
七、小芳买拼音本用了6角钱,还剩4角钱,小芳原来有几角钱?合多少元?
答案:小芳原来有10角,也就是合起来是1元。
讲解:1元有10角。
八、一堆巴掌大的硬纸牌代表数字,圆形牌代表1,长方代表2,三角代表3,正方代表4,五角星代表5,说一个数,把加起来的等于这个数的牌举起来。A、拼6 B、拼10 C、拼13。
讲解:就是用图形来拼数字,每个图形代表一个数字,预设所有形状的纸牌各一张的条件下:拼6:就是圆形+五角星,或者长方形+正方形。
拼10:就是长方形+三角形+五角星,或者圆形+正方形+五角星,又或者是圆形+长方形+三角形+正方形。拼13:圆形+正方形+五角星+三角形。
九、公共汽车上,第一站上来5个人,第二站下去2人,第三站上来3人,问:车上剩几个人,售票阿姨卖了几张票?
答案:可以8,也可以是6。
讲解:分为两种情况。包上乘务人员即司机和售票阿姨,车上就一共2+ (5-2)+3=8个,只说乘客就只有6个。
十、比67大的数说3个,比67小的数说3个。
答案:最简单的就是比67大的数字是68、69、70,比67小的数字为66、65、64。
讲解:面对大数字时,孩子不懂计算,但可以按照正数和倒数的方法进行。从67开始往下正数3个数字就是比67大的,而从 68倒数3个数字,就是比67小的。
实际生活中用数学的例子很多,例如:
1.自家计算每月电费、水费。
2.为室内装修户测量并计算铺地面用多少地板砖,粉刷四壁和屋顶要购买多少涂料,需多少材料费。
3.植树节活动中,根据种植面积和树苗棵数,计算行距、株距。
4.学校操场大约的面积,一件物体(一袋盐、几个苹果、一瓶墨水等)大概的重量,估计人或物的高度等。
5.帮助爸妈计算银行存款利息
6.外出旅行,帮爸妈设计旅行路线,并计算时间。
抽屉原理
抽屉原理的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西.” 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西.” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数.”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数.如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西.”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用.许多有关存在性的证明都可用它来解决.
1958年6/7月号的《美国数学月刊》上有这样一道题目:“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识.” 这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人.如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线.考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种.根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色.如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识.不论哪种情形发生,都符合问题的结论.
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论.这些结论构成了组合数学中的重要内容-----拉姆塞理论.
1、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。
2、原始社会,人类智力低下,当时把石块放进皮袋,或用贝壳串成珠子,用“一一对应”的方法,计算需要计数的物品。
3、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。
4、统计学的计算。迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。
5、工资的计算。财务收入与支出,日常的消费管理等等。
6、计算机相关工作者,数学是工作中必不可少的。C语言写程序,就需要运用排序算法(如快速排序,插入排序,堆排序,归并排序,基数排序,希尔排序,桶排序,锦标赛排序等等)如果掌握《数据结构》的相关知识,就会变得非常容易。
出入相补原理在生活中的应用例子如下:
1、田亩丈量和天文观测是我国几何学的主要起源,这和外国没有什么不同,二者导出面积问题和勾股测量问题。稍后的计算容积、土建工程又导出体积问题。
2、出入相补原理是一个几何学的基本原理,它指的是一个平面图形或立体图形被分割成若干部分后,面积或体积的总和保持不变。这一原理最早由三国时代魏国数学家刘徽创建,他用它来证明勾股定理、开方术、割圆术等数学定理和方法。
3、出入相补原理可以用来求解各种几何图形的面积或体积,例如三角形、梯形、圆形、梯形立体等。出入相补原理也可以推广到高维空间中的高维图形,例如二项式定理的系数表就是一种高维方体的投影。
4、举一个出入相补原理的例子。设你有一个正方形,它的边长是10厘米,那么它的面积就是100平方厘米。如果你把这个正方形沿着对角线切成两个相等的直角三角形,那么每个三角形的面积就是50平方厘米。
5、如果你把这两个三角形沿着直角边旋转和平移,使它们拼成一个长方形,那么这个长方形的面积也是100平方厘米。这就说明了出入相补原理,即正方形被分割成两个部分后,面积的总和保持不变。
拓展知识:
1、我国古代几何学的特色之一是,依据这些方面的经验成果,总结提高成一个简单明白、看起来似乎极不足道的一般原理——出入相补原理,并且把它应用到形形多种多样的不同问题上去。
2、所谓出入相补原理,用现代语言来说,就是指这样的明显事实:一个平面图形从一处移置他处,面积不变。又若把图形分割成若干块,那么各部分面积的和等于原来图形的面积,因而图形移置前后诸面积间的和、差有简单的相等关系。立体的情形也是这样。
冬瓜哥哥还是我,再用我的哦...一共可以用两个
1.井盖为什么是圆的?
因为圆形的井盖边缘到圆心的距离处处相等,无论井盖怎样旋转,井盖也不会掉到井中.方形的一边要比其对角线短,一旦井盖旋转,就有可能落入井中.
2.人们在围观时,为什么自然的围成圆形呢?
还是因为圆的半径都是相等的,当人围成圆形时,中心位置与每个人的距离相等,可以让每个人都看得很清楚!
3.为什么自行车的车轮是圆形的不是方形的?
因为只有圆形滚动起来是沿着一条直线.
4.两人都捐了零用钱的二分之一,他们捐的一样多对不对?
不对,因为两人所拥有的零用钱是未知的,也就是所对应的整体不同.
5.为什么一些铁架子围成的是长方形或正方形,而不是平行四边形?
因为平行四边形不具备稳定性
数学在生活中的运用有很多。
1、老家种菜地,需要用铁丝围一个长方形,要多长的铁丝?
这个用的数学实例:长方形周长=(长+宽)x2
量出菜地的长和宽,用数学公式求出周长,就是需要铁丝的长度。
2、家里面装修,需要准备多少块地板砖?
用到的数学实例:家中的地面面积以及一块地板砖的面积
算出家中的实际用地面积,然后算出地板砖的面积,用家中地面面积除以一块地板砖的面积就是需要购买的地板砖的块数。
3、超市的抽奖活动。
用到的数学实例:数学中的概率问题。
通过对概率的计算,超市店家可以自主设置一等奖多少名,二等奖多少名。
4、去菜市场买菜的问题。
买了一堆东西,结账的时候,往往会遇到找钱这个事情,数学计算能力好的人,可以很快算出需要找回多少钱。
5、上学放学路线问题。
用到的数学原型:两点之间,线段最短的问题。虽然很简单,但也是最常见的数学问题。