1.急
在人们的日常生活中,数学无处不在,正确运用数学知识可以使生活得到改善。
数学虽然是我们人类的大功臣,可如果我们人类不会使用它,它仍然"无利于世",所以,我们一定要用聪明的大脑,利用数学,使我们的生活更方便. 神奇的数学其实就在我们身边,让我们一起从身边的每一件小事做起,你一定会发现这神奇的数学无时无刻都在影响着我们,帮助着我们. 数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。
此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 数学在社会学中的应用也非常广泛,在统计学中更是如此。
它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险。
在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。
日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”
“数学是我们这个时代看不见的文化”,它在众多领域不同程度地影响着我们的生活方式和工作方式。当然,普通人和科学家是从不同的角度和不同的层面认识数学,普通人一般只了解数学与生活某一方面的联系,而体会不到它与生活各个方面的关联。
人们总是认为数学比较抽象,对实际工作没有直接的帮助,没有必要去深入地学习和研究数学。其实不然,数学与其它科学一样,与我们的生活息息相关。
著名的数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这是睿智的科学家对数学与生活关系的精彩描述。
当代数学已经远不止是算术和几何,而是一门丰富多彩的学科,是计算和演绎的创造性的结合,扎根于数据而展现于抽象形式中,通过揭示现象中隐蔽的模式来帮助人们了解和认识周围的世界。它所处理的是科学中的数据、测量和观察的资料,是推断、演绎和证明,是自然现象、人类行为和社会系统的数学模型,是数、机会、形状、算法和变化。
下面举个例子,让大家体会一下数学在实际生活中的运用。 例:在第二次世界大战期间,军事上、生产上、交通运输上都面临一系列的难题:飞机应当怎样侦察潜水艇的活动,有限的兵力应当怎样部署,生产应当怎样组织得更合理等等。
在二战中期,统治的纳粹德国非常猖獗,潜艇活动频繁。根据一些数学家的建议,一个用飞机进行系统巡逻的被纳了。
按照这个,可以用尽可能少量的飞机来控制一定范围的水域。在这个实施以后,德国潜艇被侦察到的可能性大大增加。
1943年2月,美国军方获悉一支日本舰队集结在南太平洋的新不列颠岛,打算越过俾斯麦海开往新几内亚。美国西南太平洋空军奉命拦截,并炸沉这支日本舰队。
从新不列颠岛到新几内亚的航线有南北两条,航程都是三天。美军得到的气象预报表明,未来三天在北路航线上阴雨连绵,而南路天气比较好。
在这种情况下,日本舰队将走北路呢,还是南路?这是美军必须进行分析和判断的。因为要完成轰炸任务,首先要派出少量飞机进行侦察搜索,要求尽快地发现日本舰队,然后出动大批飞机进行轰炸。
空军司令考虑了出动少数飞机分两路进行搜索的战略,共有以下几种: 第一,搜索重点放在北路,日舰也走北路。这时虽然天气很差,能见度很低,但是因为搜索力量集中,可望在一天内发现日舰,于是就有两天的轰炸时间。
第二,索重点放在北路,可是日舰走的是南路。这时南路虽然天气比较好,但是因为搜索力量集中于北路,南路只有很少的飞机,因此也需要花上一天的时间才能发现日舰。
于是轰炸的时间也就只有两天。 第三,搜索重点放在南路,日舰却走北路。
这时北路只有为数极少的飞机,天气又很坏,得花上两天时间才能发现日舰,轰炸时间只剩下一天。 第四,搜索重点放在南路,日舰也走南路。
这时搜索的飞机比较多,天气又好,可以指望很快就能发现日舰,轰炸时间基本上有三天 站在美国人的立场,当然是第四种情况最有利。可是,打仗不能“一厢情愿”。
站在日本人的立场,当然走北路要有利得多。所以第二种和第四种情形可能出现的机会很小。
因此,空军司令毅然决定,把搜索重点放在北路。结果不出所料,日本人果然选择了这条航线,海战基本上就在美方预期的地点发生了,结果日方遭到了惨败。
有人说:数学是科学的皇后。我认为,数学的地位与哲学非常相似。
古往今来,历代哲学家都很重视数学,伟大的哲学家柏拉图曾在自己家的门口写下了一句话:“不懂数学者免进”。由此可见数学在哲学家心中的位置有多么重要。
数学与哲学一样,既来源于生。
2.数学在生活中的应用有哪些
数学在生活中的应用有哪些 一、走进生活,用数学眼光去观察和认识周围的事物: 世界之大,无处不有数学的重要贡献。
培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。
例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”; 此外教师还可结合学生年龄特点,设计一些“调查” 、“体验” 、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格: 品 名 黄瓜 萝卜 猪肉 单 价(元) 数量(千克) 总 价(元) 这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。
二、感悟生活,架构数学与生活的桥梁: “学有用的数学,有用的数学应当为所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。
1、运用生活经验解决数学问题 在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”: 失 物 招 领 李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。 校少先队大队部 2002.3 学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义, 师:A元可以是1元钱吗? 生1:A元可以是1元钱,表示拾到1元钱。
师:A元可以是5元钱吗? 生2:可以!表示拾到5元钱。 师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。
师:A元还可以是多少钱呢?生4:还可以是0.5元,表示拾到5角钱。…… 师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑! 师:为什么不直接说出拾到多少元,而用A元表示呢?…… 由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。
本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。
2、运用数学知识解决实际问题 例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。
在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。 如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆? 通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为: (1)把100元分解为两个数的和: (2)把100元分解为3个数的和: 50+50=100 40+60=100 30+70=10020+80=100 60+20+20=10050+20+30=10040+40+20=10030+30+40=100 (3)把100元分解为4个数的和 (4)把100元分解为5个数的和 40+20+20+20=100 20+20+20+20+20=100 30+30+20+20=100 学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”
这种图文并茂的应用题,使学生。
3.小学数学在生活中的应用(举例)
原发布者:中国学术期刊网
数学在生活中的运用内容摘要:坚持数学来源于生活,扎根生活,且反过来又应用,服务于生活,将学生应用于数学过程兴趣化,生活化,为学生在生活中应用数学知识,提高数学能力提供了一个广阔的空间。关键字:数学;生活中图分类号:g623.5学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。数学就应该在生活中学习。有人说现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了自然会发现,其实数学很有用处。一、在应用数学知识中认识生活实际我们以往的数学教学往往比较重视解答现有的数学问题,既课本上已经经过处理的问题。学生只需要按照学会的解
4.数学在生活中的应用
数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作渐被越来越多的经营者用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。 我在纸上写道: 设某顾客买茶杯x只,付款y元,(x>3且x∈N),则 用第一种方法付款y1=4*20+(x-4)*5=5x+60; 用第二种方法付款y2=(20*4+5x)*90%=4.5x+72. 接着比较y1y2的相对大小. 设d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当d>0时,0.5x-12>0,即x>24; 当d=0时,x=24; 当d/Article_View?ID=20&page=1 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。 如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα*d这个问题至此便迎刃而解了。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。 在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
5.数学在生活中的运用有哪些例子
1、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。
2、数学加减乘除的计算。如商品的买卖,日期的计算,时间的计算。
3、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。
4、统计学的计算。迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。
5、工资的计算。财务收入与支出,日常的消费管理等等。
扩展资料:
数学的几个分支介绍
1:数学史
2:数理逻辑与数学基础
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理 *** 论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
生活中的数学现象及原理如下:
1、时间和日历:日历是用来记录时间的工具,它包含了月份、星期和日期等信息。时间的计算和测量是基于数学原理的,例如,一天有24小时,一小时有60分钟,一分钟有60秒等。
2、购物和金融:在购物和金融领域,数学被广泛应用。例如,计算商品的价格、折扣和税费,计算货币兑换率,计算利息和投资回报率等。
3、测量和几何:测量和几何是数学的重要分支,它们在生活中的应用非常广泛。例如,测量长度、面积和体积,计算角度和距离,绘制地图和建筑设计等。
4、运输和交通:数学在运输和交通领域的应用也很常见。例如,计算车辆的速度和加速度,规划最短路径和最优路线,优化交通信号控制等。
5、自然界中的模式和规律:自然界中存在许多数学模式和规律,例如,斐波那契数列、黄金分割比、对数增长等。这些模式和规律帮助我们理解和解释自然现象。
数学应用的实例
1、金融和经济:金融和经济领域广泛应用了数学,例如利率计算、复利计算、股票价格预测、风险评估和投资组合优化等。
2、科学和工程:科学和工程领域对数学的应用非常广泛,例如物理学中的力学、电磁学和量子力学等,工程学中的结构分析和优化、信号处理和控制系统等。
3、统计分析:统计学是数学的一个重要分支,它应用于数据分析、调查和决策制定等领域。例如,调查数据的收集和分析、数据模型的建立和验证,以及预测和推断等。
4、计算机科学:数学是计算机科学的基础,算法和数据结构的设计、密码学、图像处理、人工智能和机器学习等领域都依赖于数学。
5、医学:医学中的许多技术和方法都与数学紧密相关,例如医学成像、药物剂量计算、流体力学模拟、统计分析和生物数学模型等。
1. 用数学知识解决生活小难题
用数学知识解决生活小难题 1.用数学知识解决生活中问题(举实例)
原发布者:沈敏琴
用数学知识解决日常生活中的问题数学源于现实并用于现实,运用数学知识解决日常生活和工作中的实际问题是学习数学的归宿。要学习有用的数学,教学中必须充分利用学生已有的生活经验,重视挖掘教材与生活实际有联系的因素。教师要随时引导学生把所学知识应用到生活的实际中去,从而体验到所学知识的意义和作用。如学习了“分类”后,可以让学生自己动手来整理自己的书包和书桌,让整理好的学生来说一说他是按什么进行分类整理的;学习了“生活空间”的前、后、左、右后,可以让学生说出自己座位的前、后、左、右分别是谁,学校的前、后、左、右分别是什么地方;学习了“统计”,让学生统计教室内各种清洁用具的数量、统计一年级各班学生人数及男女生人数,统计班里学生是在那个季节出生的;在学完“20以内的加减法”后,有意识的带领学生搞一次社会实践活动,让每个孩子拿20角钱去菜市场买菜。在这次活动中,就有许多学生出现了不会算账的想象,有的是口算不过关,有的是弄不清元、角的关系……无论是哪一种原因,都使学生深刻的认识到数学对于我们的生活有多么重要,学数学的价值有多么大,从而激发了他们学好数学的强烈欲望。学生从活动中不仅理解、掌握了数学知识,而且能观察生活中存在的数学问题,并加以解决。在解决中又会出现一些小问题,再开动脑筋加以完善解决,从而获得应用的技能。总之,要让数学与生活“亲密接触”,我们的数学教学必须由书本数学走向生活数学,生活与数学密
2.利用数学知识解决现实生活问题的心得体会
有一次,妈妈烙饼,锅里能放两张饼。
我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。
卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。
光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。
自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。
可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。
此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。
例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计。
其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.。
3.求文章:运用数学知识解决生活问题
找了篇论文不知道可以用不 标题:浅谈数学在生活中的运用摘要数学来源于生活,又运用于生活。
在课堂教学中要让学生感受数学与现实生活的联系。初步学会运用数学知识去解决日常生活中的问题,增强应用数学的意识;体会数学与实际生活的密切联系,了解数学的实用价值,增进对数学知识的理解和学好数学的信心,从而激发学生学习数学的兴趣。
关键词数学;生活;兴趣 数学来源于生活,在生活中到处都有数学。新课程标准提出:数学要与现实生活相联系,要求教师要利用各种教学方法结合实际,让学生感受数学与现实生活的联系,从中获得适应未来社会生活和进一步发展所需要的数学知识;初步学会运用数学的思维方式去观察、分析现实生活,去解决日常生活中的问题,增强应用数学的意识;体会数学与实际生活的密切联系,了解数学的实用价值,增进对数学知识的理解和学好数学的信心,从而激发学生学习数学的兴趣。
作为一名数学教师,必须让数学教学活起来。教法要活,学法更要活。
要做到这一点,就需要教师为学生构建开放的数学学习模式,让“生活中的数学”走进课堂,让数学课堂真正变成学生学习的乐园。 1.用生活事例解决实际问题 在教学过程中,教师要明确提出说明课题内容的意义和重要性,可以通过事例,让学生知道运用所学到的知识来解决一些实际问题。
如:我在教学一年级的“加减混合运算”时就用这样的生活情景描述并加以表演:“教室里本来有5个学生,现在进来4个,又走出去1个,现在有几个学生?来解决“5+4–1=?”的问题,通过情景描述,学生很容易地就掌握了运算过程。又如:我在教学“元、角、分”时,首先创设了这样一个教学情境:汶川地震过后,小红想给灾区的小朋友捐款,把自己攒的零花钱都拿出来,她一数有50个1角的硬币,拿这么多硬币不方便,于是就找邻居的阿姨来帮忙想办法,阿姨收了小红的50个1角硬币后给了小红5张1元钱纸币,小红有点不高兴,觉得自己有点吃亏。
你们说小红用50个1角钱硬币换5张1元钱纸币亏不亏?为什么?首先组织学生讨论,然后再告诉大家这10个1角就是1元,5个10个一角就是5元,所以50个一角和5元是相等的,然后根据学生的分析,再组织学生观察已分好的硬币,从中找规律:“元和角之间有什么关系?”学生很快得出结论:“1元和10角相等”,“10个1角就是1元”,“1元就是10个1角”,所以“1元=10角”。 2.创设生活情境,激发学习热情 教师通常在教学计算题时,只注重教会方法,然后让学生不断地练,反复地练,以求计算正确。
这样不仅枯燥乏味,也影响学生的积极性。这时老师可以创设教学情境,模仿现实生活,使学生身临其境。
例如我在上“小数加减法”这一课时,让学生扮演售货员和顾客,体会数学在生活中的乐趣:一个小顾客买一根火腿肠1.8元,一个面包1.5元,于是老师提出问题,小朋友你们说他该付多少钱呢?被情景吸引的学生都能列出加法算式1.8+1.5=?,可是等于几呢?这时不仅把小顾客和售货员愣住了,也给所有的学生设了个悬念.于是大家一起交流、讨论、争辩,终于找到答案。这样富有情趣的模拟生活情境,走入数学课堂,学生对学习知识产生了浓厚的兴趣,在以后的数学学习中就能保持积极的态度。
3.加强实践活动,体会数学生活的乐趣 3.1课堂上的实践活动;《数学课程标准》建议教师“让学生在现实生活体验和理解数学”。小学阶段尤其是低年级学生,主要还停留在“直观形象水平”上。
如我在教学“克、千克的认识”时,把准备好的一千克盐、一千克米、一千克豆、一千克沙等给学生掂一掂、看一看、摸一摸、数一数、量一量、试一试,让他们感知一千克到底有多重。那么就让学生亲自对实际事物进行实践操作。
然后再将学生分成小组,把带来的橘子、香蕉、梨、黄豆、米等称一称。这样就激发了学生的学习热情,培养了学生的动手能力,达到了教学的目标。
3.2课外实践活动;生活中的数学总是与社会生活实践相联系,在传授数学知识和训练数学能力的过程中,教师要使学生了解数学知识的应用价值,让学生能直接应用数学知识、技能,尽可能地创造实际应用机会,让学生感到学习数学知识的重要性。如:学了“分一分”后,安排学生在家里把自己的小柜子、书包、小抽屉等动手分类整理,从中体验数学知识在生活中的实际应用。
教师可以把数学融入生活之中,在学生学习数学的过程中,引导学生学会把已学知识运用到生活实践中,这样的设计不仅贴近学生的生活,符合学生的心理需要,也给学生留有一些遐想和期盼,使他们将数学知识和实际生活联系得更紧密。 总之,教师要积极地创造条件,在课堂中为学生创设生动有趣的情境来启发诱导,在课外要积极应用数学知识解决实际问题,激发学生强烈的求知欲,让学生自主探索,发现问题、解决问题,享受创造的乐趣,获得成功的喜悦,真正成为学习的主人。
参考文献 [1] 关文信主编.新课程理念与小学数学课堂教学实施.第1版.首都师范大学出版社出版,2003.5.[2] 扬九俊等主编.学习方式的变革.第1版.江苏教育出版社出版,2006.1。
4.用数学解决生活中的实际问题
今天,我在写作业的时候发现了一个问题。那就是生活中的圆。
什么叫做生活中的圆,那就是在生活中有哪些关于圆的周长、圆的面积还有圆的对称轴之类的东西,也就是圆的知识在生活中的应用。
在我们的现实生活中有许多地方要应用到圆的周长,只要认真观察,就肯定能发现的。据我所知,车轮走一圈的路程就是这个圆的周长;时钟的分针针尖走过的路线是钟面的周长;圆形餐桌围的花布边的长度也是餐桌面的周长;人们经常戴在手上的手镯也含有圆的周长的知识……真的是太多太多了。
圆面积其实也很简单,只要会观察,圆桌的大小也就是圆桌的面积;时针扫过的面的大小也就是这个钟的面积;还有就是可能大家很少见,那就是用绳子拴住牛吃草,求牛吃草的最大范围,也就是求圆的面积。
还有,圆有无数条对称轴。
通过学习圆,更加地让我了解了圆在生活中的用处,使我懂得了更多物品的计算方法,使我受益匪浅!
5.用数学知识解决生活中问题(举实例)
原发布者:沈敏琴用数学知识解决日常生活中的问题数学源于现实并用于现实,运用数学知识解决日常生活和工作中的实际问题是学习数学的归宿。
要学习有用的数学,教学中必须充分利用学生已有的生活经验,重视挖掘教材与生活实际有联系的因素。教师要随时引导学生把所学知识应用到生活的实际中去,从而体验到所学知识的意义和作用。
如学习了“分类”后,可以让学生自己动手来整理自己的书包和书桌,让整理好的学生来说一说他是按什么进行分类整理的;学习了“生活空间”的前、后、左、右后,可以让学生说出自己座位的前、后、左、右分别是谁,学校的前、后、左、右分别是什么地方;学习了“统计”,让学生统计教室内各种清洁用具的数量、统计一年级各班学生人数及男女生人数,统计班里学生是在那个季节出生的;在学完“20以内的加减法”后,有意识的带领学生搞一次社会实践活动,让每个孩子拿20角钱去菜市场买菜。在这次活动中,就有许多学生出现了不会算账的想象,有的是口算不过关,有的是弄不清元、角的关系……无论是哪一种原因,都使学生深刻的认识到数学对于我们的生活有多么重要,学数学的价值有多么大,从而激发了他们学好数学的强烈欲望。
学生从活动中不仅理解、掌握了数学知识,而且能观察生活中存在的数学问题,并加以解决。在解决中又会出现一些小问题,再开动脑筋加以完善解决,从而获得应用的技能。
总之,要让数学与生活“亲密接触”,我们的数学教学必须由书本数学走向生活数学,生活与数学密。
6.用数学知识解决生活中的问题日记400字
星期天,我与妈妈出去散步,在一个弄堂里,我闻到了一股浓浓的,烤红薯的香味.闻到这香味,我的肚子就“咕咕”地叫了起来,“妈妈,我们买个红薯吃吃吧,我饿了.”我拉着妈妈的手央求道,“买一个倒是可以,不过……”“不过什么?”我急忙问,“不过买了以后先回家,算出了红薯的体积,你才能吃.”“行!行!”我满口答应.回到家,我早已把要算红薯体积的事抛到了九霄云外,拿起红薯就要吃,“哎,怎么开始吃了?不是说好要算红薯的体积吗?不能说话不算数!”“啊?”我大吃一惊,“还真要算啊?”“那是当然!”妈妈说,“你要先算出红薯的体积,才能吃!”“哼!有什么了不起的,不就是算个红薯的体积吗?难道能难倒我?” 我翻开数学书查看,可书上只有长方体、正方体和圆柱体体积的计算方法呀,再说了,这红薯是个不规则的立体图形,又不能把它揉捏,怎么算呀?我托着下巴冥思苦想.这时,我看到了桌上的一本《数学名人小故事》,我翻开它,饶有兴味读起了第一个小故事,这个故事是讲阿基米德利用等积代换算出了金的真.我灵机一动,想道:我不是也可以用等积代换来求红薯的体积吗?于是,我拿来一个圆柱形的玻璃杯,量出它的底面直径是6厘米,我往杯中到了10厘米的水,然后把红薯完全浸没在水中,这时,杯中的水上升了.我又量了一下,现在的水是15厘米,也就是说,杯中的水上升了:15-10=5(厘米)按照等积代换,上升水的体积就是红薯的体积,由此,可以算出红薯的体积是:(6÷2)2*3.14*5=141.3(立方厘米) “妈妈!我算出来了!我算出来了!是141.3立方厘米!我算出来了!我能吃红薯了!”我一路小跑来到妈妈跟前,“哦?算出来了?”妈妈放下手中事情微笑地看着我.“嗯,是141.3立方厘米.”我自豪地说,“那你说说看是怎样算的?”妈妈又问道.我把我实验的过程讲给妈妈听,妈妈听了之后向我翘起了大拇指,还夸我是“数学小博士”.其实,在生活中,许多看似不能求的东西都能通过等积代换来求,只要大家肯动脑,爱动脑,就什么难题也难不倒我.。
7.如何让学生运用数学知识解决生活中的实际问题
“学生要能够运用所学的知识解决实际问题”。
无论是美国“数学课程标准,”还是其它国家的数学教育都已普遍重视解决实际问题。我国的新课程标准要求:“让每个学生都学会有价值的数学;都能获得必需的数学;不同的人在数学上得到不同的发展;能够运用所学知识解决生活中的简单应用问题。”
学习就是为了应用数学知识解决实际问题。因此,对新学习的数学知识,教师应多方搜集现实生活及其他学科中与新知识相联系的背景,创设数学问题情境,而当学生掌握了有关知识和技能后,再引导学生在现实世界中探求应用,构造数学模型解决实际生活中的问题,这样,在学习过程中理论与实际形影不离,教师再联系实际生活,培养学生灵活应用所学知识解决实际问题的意识和能力。
另外,作为教学形式的“问题解决”其方式更强调学生自己动手,因此教师不应该只象教练一样示范正确的方式来解决问题,而应选择适当问题,鼓励学生互相讨论,让学生交流自己的解法和认识,这样创造研究出的问题结论比得到正确答案更重要。另外,还应让学生自己动手、演算、画图、解答问题,放手让学生自己搞一些小调查,小试验,独立地提出问题并加以解决。
下面是我从事数学教学以来对该问题的几点思考:一、在生活中培养学生的数学应用意识 如教学三角形的稳定性后可以让学生解释一下:我们住的房子的屋顶为何要架成三角形的?木工师傅帮同学修理课桌为何要在桌脚对角处钉上一根斜条?又如教学平行四边形的特性请学生说明:为什么拉栅门要做成平行四边形的网格状而不做成三角形?通过解释一些生活现象,使学生更深地感受数学与现实生活的密切联系。另外要让学生运用数学知识解决实际问题,如在刚教学统计的初步认识中,教师先出示一张中国地图,问学生:“这是一张什么地图?”学生回答后,又问:“你知道我国的领土的面积吗?”学生回答后,再问:“你知道我国的人口数吗?”在学生说出大概的数目基础上,教师准确的说出中国人口数为十二亿九千五百三十三万,并介绍这是我国最近的第五次人口普查统计出的结果。
此时学生已经对人口普查产生了兴趣,老师可趁机导入新课“人口普查内容项目很多,但无论哪一项都需要运用到统计学,今天我们就来学习这方面的知识,你们想学不想学?”接着就在学生强烈的求知欲下揭示课题。同时在本节课最后布置实践作业:分组进行“小型人口普查”调查我校整个五年级的人数。
这样,既使学生认识到统计的作用,强化了统计在学生脑中印象,又让学生去实际调查,使学生明白数学知识实际是用来解决生活中的问题的。二、用实际问题调动学生的学习兴趣心理学研究表明:学习内容和学生熟悉的生活背景越贴近,学生自觉接纳知识的程度就越高。
因此,在课堂教学中,要尽可能地将教学内容与学生的生活背景结合起来,从贴近学生生活的实际问题引入新课,调动学生的学习兴趣。例如在学习“垂线”的概念时,可结合实际提出这样的问题:“马路的十字路口的两条道路位置上有何关系?再比如电线杆与它上面架的电线位置上有什么关系?”这些都是数学在实际生活中具体涉及到的例子,能激发学生的求知欲望,使学生产生“生活中处处有数学”的意识,而且能直观地理解垂线的意义,并意识到学习这个内容的重要性。
教师在教学中还要注意充分利用现代化教育技术教学,用模型、幻灯、录象、计算机等现代教学手段,增加师生互动、形象化表示数学的内容,同时将抽象的知识直观化。这样能吸引学生的注意力,调动学生积极学习知识的兴趣,又能加深对知识的理解,提高学习效率。
三、教学联系实际,从生活中发现问题、提出问题从知识的掌握到知识的应用不是一件简单、自然而然就能实现的事情,没有充分的、有意识的培养,学生的应用意识是不会形成的。教学中应该注重从具体的事物提炼数学问题,引导学生联系日常生活中的一些问题用数学知识来解决,这有助于学生数学应用意识的形成。
比如在讲“行程应用题”时,利用这样一个生活中常遇到的问题:甲乙两地有三条公路相通,通常情况下,由甲地去乙地我们选择最短的一条路(省时、省路);特殊情况下,如果最短的那条路太拥挤,在一定时间内由甲地赶到乙地我们就选择另外的一条路,宁肯多走路,加快步伐(速度),来保证时间(时间一定,路程与速度成正比)。从数学角度给学生分析这个问题用于“行程应用题”是路程、时间、速度三者关系的实际应用。
四、精心编制问题,培养学生的应用能力当前我国数学教材中的问题和考题多半是脱离了实际背景的纯数学问题,或者是看不见背景的应用数学问题。这样的训练,久而久之,使学生解现成数学题的能力很强,而把实际问题抽象化为数学问题的能力却很弱。
而数学是以现实世界的空间形式和数量关系作为研究对象的,它的许多概念、定理和方法都从现实中来。但它有更多结论去为生产和社会各行各业服务。
因此,教师可在遵循教学要求的前提下,精心编制一些与生活、科学有关的问题,可以使学生感到自己的周围处处有数学,从而使其萌发学好数学去解决。
8.浅谈如何运用数学知识解决生活中的数学问题
《新课程标准》强调要使学生初步学会运用数学的思维方式去观察、分析现实,去解决日常生活中的问题,增强学生应用数学的意识,使学生真正体会到数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.由此可见,让学生能从现实生活中发现问题并且能运用自己所学的知识和方法解决问题,发展学生的应用意识是十分必要的.把所学的知识运用到实际生活中,使学生学习数学的最终目标,我积极鼓励学生运用所学知识解决简单的实际问题,获得成功的体验,从而激发学生学习数学的兴趣,使学生具有初步的创新精神和实践能力.一、把计算和解决问题相结合1.小学数学教材中计算所占的比重很大.学生的计算能力是小学生必须掌握的、基础性的一部分知识.但是有一部分同学认为单纯的计算枯燥无味,学习积极性不高,所以我特别注意在进行计算教学时与学生的日常生活联系起来.例如在教学了加减法时,我让学生自己去收集生活中购物时的数据,结果学生在日常购物时特别用心,了解商品的价格,付钱时的情况.在课堂上出示学生自己搜集的素材编写的应用题时,学生的积极性非常高.在掌握了计算的同时,使学生发现数学就在身边.。
这是个促销故事。
樱桃商场的一家手表店由于手表的卖价比较昂贵,很少有人光顾,生意很惨淡,面临破产的困境。可今天却把小韩和她的妈妈吓了一跳。原来,这叫钟表店门口站满了排队买手表的人。小韩和妈妈面面相觑。
小韩拉着妈妈走到队伍最后,问一位正在排队的阿姨,这才知道,原来这家店卖一款名牌手表,原价240元,现价只要120元,大家都抢着买!小韩听了,也激动地往柜台挤去。韩妈妈可没这么激动,她觉得240元的手表只要120,打了五折,定有猫腻!边让小韩先不要这么激动,等她来打探再买。她走到柜台,问售货员:“您好,我想问一下,真的只要付120元,就可以把手表拿走吗?”
回答:“您只要付120元,就能得到面值120元的代金劵2张,然后再把它以票面价格卖给其他人,得到240元,再拿钱来买这只手表。”“可是别人怎么会买我的代金劵呢?拿到也没用啊?”“购买了本店代金劵的人同样有一次机会用1张代金劵来店里兑换2张代金劵,再推销出去就好了。”“那要多久?”“一个月。”“不用了,谢谢。” 小韩一脸迷惑。妈妈说:“你被骗了,我算给你看
设有10人来买,每人推销2张,就需要推销10×2=20(人):第一批购买这20张的人要推销给20×2=40(人),
第三批:10×2×2×2=10×2?=80人
第四批:10×2×2×2×2=160人
第五批:10×2×2×2×2×2=320人
……第十批就是0人
也就是说有10000人想买手表,不到10回合,就全部被吸入这个雪球中了。到最后,雪球滚不动了,而真正花120元买到手表的人只占二分之一,其余的人虽然手里有代金劵,但也再卖不出去了。
现象:当父母在煮米饭的同时,洗菜,切菜,做菜!!
原理:时间上的统筹规划
感想:数学与生活息息相关,无处不在!!
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
有一群小朋友玩捉迷藏,其中一个开始数数,“1,2,3,4,5,6,7,8,9,10,11,12,13,14......200”
好,他开始去找了
1、火车相向而行问题:
两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?
我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
2、为什么天气预报有时会出错?
这几天我一直都在关注着西安的天气,满怀信心地等待着西安下一场“暴雪”,天气预报也是预报有“暴雪”,可是却“非必要,不下雪”,几乎是不见一片雪,这到底是怎么回事呢?俗话说“天有不测风云”。
其实,这涉及到一个数学概念——“混沌”,即“对初始值的极端不稳定性”。常见的“蝴蝶效应”就是混沌的一种现象。
一般情况下,全局性的天气模式基本上遵循着某些已知的合理进程,通过若干种不同的模拟方式,根据略有差异的初始条件,天气预报工作者就能推测未来的天气变化。这里是推测出的可能性,并不是绝对的。
然而,天气是由一系列复杂因素的组合而成的。初始条件的微小变化会使预报结果差异很大,这时,天气已经进入了混沌区域,预报的时间越长,到达混沌点的可能性就越大,于是,天气预报的准确率就越不好把握。当然,随着现代科技的进步,天气预报的准确率也会越来越高,也就是“可能性”越来越大。
3、为什么电风扇的叶片都是奇数?
只要你留意观察身边的电风扇,它的叶片几乎都3、5、7等奇数,知道为什么吗?从技术、成本以及外观等综合因素考虑的结果,其主要原因是:奇数的叶片组合比偶数的叶片组合有着更多的性能优势。
如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。
因此,轴流风扇的设计多为不对称的奇数片叶片设计,这样的设计理念也应用于直升飞机的螺旋桨在内的各种扇叶设计中。
4、买**的中奖概率有多低?
你买过**吗?接下来就以为例来谈谈数学中的概率问题。
是由33个红球和16个蓝球组成,每次基本上维持在6个红球和1个蓝球,所以
一等奖(6+1)中奖概率为:1?17721088=0.0000056%。
二等奖(6+0)中奖概率为:
15?17721088=0.0000846%。
三等奖(5+1)中奖概率为:162?17721088=0.000914%。
四等奖(5+0、4+1)中奖概率为:7695?17721088=0.0434%。
五等奖(4+0、3+1)中奖概率为:137475?17721088=0.7758%。
六等奖(2+1、1+1、0+1)中奖概率为:1043640?17721088=5.889%。
共计中奖率:6.71%,除去六等奖,其他合在一起还不到1%。如果你想中一等奖,只有千万分之一的可能性。
虽然概率很低,但是因为我国的人口基数非常大,买**的人数相对比较多,所以理论上来讲,是有人能中一等奖的!
5、为什么马路上下水道发生井盖几乎都是圆形的?
走在马路上,见到的井盖几乎都是圆形的,很少会见到其他形状的井盖。
这是利用了同一个圆内的直径都是相等,这样不论怎么移动井盖,盖子都不会掉下去,那么在下面施工的工作人员就有安全保障了,盖好井盖后,井盖也就有了安全保证。
如果设计成三角形或者其他多边形的,盖儿虽然比窨井口大一些,但还是有掉下去的可能。
由于窨井有时需要人工梳理或架线等,这时候又要求窨井的面积尽可能地大。在这些图形中,当它们的周长相等时,圆形的面积最大。同时圆形进口又与我们的体型接近,便于工作人员进进出出。