1小蚂蚁在蚁洞里住久了,便想出去闯天下。于是,它告别了小伙伴,带着一些食物走向了它十分向往的大城市。
一天它来到了数字城。小蚂蚁刚踏进城门,就被两个圆头圆脑的家伙给拦住了,它定眼一看,这是两个“0”。两个零同时说:“什么人,想进数字城?先拿出智商凭证,没有,就先过了我们这一关。”小蚂蚁好奇了:这里干什么呀,进门先要做测试?好,就让我来试一试。零守卫摇身一变,成了个空空的“九宫格”。它叫来许多数字,对小蚂蚁说:“把1——9填进格子中,使横、竖每行每列的和都相等。”小蚂蚁一看,大笑:“这种东西能难得住我?”说完,随手大笔一挥,写出来:
4 9 2
3 5 7
8 1 6
守卫一下子就不见了,小蚂蚁的眼前展现出一条宽阔的大道。
小蚂蚁踏上了这条路,正当它高高兴兴的时候,肚子却饿的“咕咕”叫了。小蚂蚁打开包裹,呀,食物和钱都不见了,可能是路上被偷了,这可怎么办呢?突然他看见前面的烧饼店聚满了数字,原来是店主在搞活动。店主举着喇叭大喊:“谁能回答出这道题就奖三个烧饼。一个饼煎一面要三分钟,现在锅子能同时煎两个饼,问三个烧饼两面都要煎最快要几分钟?”客人们都说要12分钟。小蚂蚁陷入了沉思,这道题不可能这么简单,最少,最少,啊,有了!小蚂蚁对周围的数字们说:“可以这样做,把1号和2号饼先煎三分钟,这时候两个饼都熟了一面。然后把2号饼取出,放入3号饼,同时1号饼翻身再煎三分钟,这时的1号饼已经全部熟了,3号饼只熟了一面。最后再把2号和3号饼不熟的一面一起煎三分钟,就大功告成了。这种方法只要9分钟。”店主宣布小蚂蚁获胜,并且奖给它三个烧饼。
2两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。
3有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这还有:://.dxstudy/information19/96982.htm
数学是一门让人望而生畏的学科,但是,我们可以通过一些小技巧来让它变得更加有趣。本文将为大家介绍一种数学小魔术,让你轻松解决枯燥问题。
变色龙式子我们先来看一个式子:(2a-3b)×(2a+b)。这个式子看起来很普通,但是它却有着神奇的变化。
四个小步骤我们可以通过四个小步骤来解决这个式子:2a×2a、2a×b、(-3b)×2a、(-3b)×b。这些小步骤看似简单,但是它们却是我们解决问题的关键。
思考与纠错在进行计算的过程中,我们需要不断思考和纠错。比如,在计算过程中,我们发现-6ab应该是-3ab,因为前面有一个-3b。这时,我们需要及时发现错误并进行纠正。
最终答案通过四个小步骤的计算和思考纠错,我们得到了这个“变色龙”的最终答案:4a^2-3ab-3b^2。这个答案看起来很简单,但是它却是我们解决问题的关键。
数学也可以很有趣通过这个小魔术,我们可以发现,数学也可以很有趣。只要我们掌握了一些小技巧,就可以轻松解决枯燥的问题。
三水每在春节萌宝贝群里
发红包和抢红包活动中,
第一次抢到一元钱接着
发二元出去,
第二次抢到二元钱接着发
四元出去,
第三次抢到三元钱接着发
6元出去,
…
共进行了十次,那么三水每
的钱包里少了多少元钱?
在世界著名水都,有个马尔克广场,广场的一端有一座 82米的雄伟教堂,教堂的前面是一片开阔地,这片开阔地经常吸引着四方游人到这里做一种奇特的游戏,先把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面。你猜怎么着?尽管这段距离只有175米,竟没有一名游客能地做到这一点!他们全都走成了弧线,或左或右,偏斜到了另一边。”
原因:1896年,挪威生理学家在收集了大量事例后分析得出:这一切都是人自身的两条腿在作怪!长年累月的习惯,使每个人一只脚伸出的步子,要比另一只脚伸出的步子长一段微不足道的距离,而正是这一段很小的步差x,导致人们走出了一个半径为y的大圈子!设某人的两脚踏线间相隔0.1米,平均步长为0.7米。当人在打圈子时,圆圈半径y与步差x为如下关系:y=0.14/x(0<x<0.1)”
1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是1046是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是1046,都没有重复。 所以,维纳的年龄应是18。
把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
答案:663
两个迷惑了大部分人很久数学知识:
第一,硬币悖论。
将两枚一样的硬币放在一起,固定住其中一枚硬币,使另一枚硬币绕其旋转,那么,旋转的硬币究竟要转多少圈才能转回原来的位置呢。
照理来说,一样的硬币会有一样的周长,所以在刚好转完一圈的时候会转回原点。可做出实验的过程中,却观察到,转了一圈才刚好转到固定硬币一半的位置。等转回原点的时候,已经转了两圈。
这可以说是一种误解,实验操作过程的一种象。如上图,一开始D点在硬币的下方,并且与固定硬币相接,旋转硬币在固定硬币的上方,当旋转硬币旋转到固定硬币下方时,D点仍在硬币的下方,而此时与固定硬币相接的是I点。当实验做到这一步,就会下意识的让人认为旋转硬币已经转了一圈(不信动手试试,嘿嘿),实则为半圈。有一说一,我不大清楚为啥这脑筋急转弯一样的题目会被一度归为世纪难题。
第二,三门问题。
这个问题会一度被广泛讨论的最大原因在于人为限制,为何这么说,先从问题本身分析。
三扇合着的门,其中有一扇门的背后有一只羊。现在打开其中一扇门,能看见羊的概率是1/3。如果有人先选择了一扇门,不管里面有没有山羊,这扇门暂时不开,而是打开另外两扇中的其中一扇没有羊的门。此时让一开始选门的人做出二次选择,继续打开这扇门或者打开另一扇未开的门。接下来出现了不知道是哪些人得出来的结论:“此时能看见羊的概率是2/3。”
这下确实把我愣住了,因为我怎么思考都感觉此时的概率是1/2,因为这种情况不就等于是排出了一扇门,在两扇门里作出选择吗,二选一究竟怎么得出个2/3来的?无苦苦挣扎,就是跳不出的死循环。
于是,无抱着谦虚的的心态,在网上寻求万能的网友来为我解决此题。
网友果然是万能,连解题方法都是五花八门,果然做数学题不能死脑筋呀,我还是太嫩了,得多学学。
很多解释我都看不懂,由于我知识水平有限,所以之后又找了一些文字接地气的网友来为我解答。在大家的合力帮助下,我终于理通了。一开始我只是以为自己太嫩了,理通的后我意识到,我根本就是孤陋寡闻,这种问题居然能一卡就卡了几个小时。我一直解不出2/3的原因,是问题的条件有漏了,漏了个啥?在二次选择的时候有两个选择,保留或更换,要想得出2/3的概率,就一定得有必定选择更换的条件,这样就变成了在3扇门里面选2扇门这种问题。
所以一开始的时候为什么没看见这个条件呢?因为一开始就有这条件的话,这“大难题”不就变成了小学生问题吗?原来如此,那解不出答案应该不是无的问题,而是条件的问题呀。不!这就是我的问题!这么长时间都找不到这缺失的条件,怎么可能不是我的问题!
棋盘上的数学
古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对大臣表示感谢,国王答应满足这个大臣一个要求。大臣说:“就在这个棋盘上放一些米粒吧。第1格放1粒米,第2格放2粒米,第3格放4粒米,然后8粒米、16粒米、32粒米……一直到64格。”“你真傻,就要这么一点米?”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多的米!”国王真的没有这么多吗?
现在我们大家来帮国王算算大臣想要多少粒米,国王的国库里到底有没有的那么多的米。
棋盘共有64格,如果按1,2,4,8,16,32,……即,,,,,,……放棋盘格里,到了第64格应该放粒米,那么这64格里共应该放这么多的粒米。
在这儿,,,,,,,……,构成了一个以2为公比,1为首相的等比数列,而大臣想要的米粒总数就是这个等比数列的和。利用等比数列求和公式可得这64个数的和为:
==
这是一个相当大的数字,因为
=××××××16
虽然这不是一个准确的数字,但是从这个式子不难看出结果有多大。国王的国库里会有这么多的米吗?答案不用说大家估计已经知道了。
另:在这里y=(n是自变量,n=0,1,2,3,……,63)是一个指数函数,而且是一个单调递增的函数,因此整个值会随着n的增加而增加。在数学上有一种说法叫“指数爆炸”,指的就是递增的指数函数。当递增的指数函数的指数越来越大时,该指数函数的图像就会增加的越来越快,图像就会像直线一样上升。所以是一个非常大的数。
1.哥德巴赫猜想:1个偶数可分为2个质数相加《本题未解》(本题被誉为数学王冠上的明珠,陈景润证明了1个偶数可分为1个质数加上2个质数相乘,俗称1+2)
2.费马猜想:任意自然数abc,当n大于2时,a的n次方加b的n次方必不等于c的n次方《本题已解,奖金已送出》(法律专业的费马写完这个猜想后说道:我已想到这个题目的美妙解法,无奈这页空白太少,写不下,就不写了…后来的数学家看到这句话后大为光火,奋而求解,终于在350多年后怀尔斯用模椭圆曲线和群论搞定了本题)
3.四色猜想:任何地图只要4种颜色就可以区分所有国家《本题已解》(16年美国数学家阿佩尔、哈肯用2台计算机经过50多天100多亿次逻辑判断证明了出来,据说刚开始它作为答案仅仅是因为没人能证明该证明过程是错的)
4.植树问题:种20棵树,4棵为1行,问最多能种几行(16世纪排出16行,19世纪排出18行,20世纪末排出20行,那么你呢…)
5.欧氏第五公设问题:…等价表达…过直线外1点只有1条平行线《本题无解》(欧几里德通过这个设推出了欧氏几何,也叫平面几何;顽强而又不幸的罗巴切夫斯基通过这个设的反面推出了非欧几何,也叫黎曼几何,广义相对论的基础…)
6.黎曼猜想:黎曼zeta函数等0时的所有解在同一直线上《本题未解》(本题非常的神秘,据说它涉及数论函数甚至经济社会等等方面,博奕论鼻祖纳什曾经用n年时间求解此题,不幸疯掉…)
7.角谷猜想:1个自然数,是偶数就除2,是奇数就乘3加1,最后结果总会是1《本题未解》
8.单色3角形问题:有6个点,每2点用黑色或红色相连,是否必定存在1个单色3角形?《本题未解》(另一表达:6个人在一起,必有3个人认识或不认识)